简介
我们首先应该从WAP-Tree说起,下面一段话摘自《Effective Web Log Mining using WAP Tree-Mine》原文
后来在实现WAP-Tree的算法的过程中,人们发现WAP-Tree在搜索频繁项的过程中还可以更进一步的优化,于是人们将它改进后成为“Pre-Order Linked WAP-Tree”(简称PLWAP-Tree),具体内容我们会在下面陈述。
A. Algorithm 2 (Doubly Linked Tree Construction) Input: A Web access sequence database WAS and a set of all possible events E. Output: A doubly linked tree T. Method: Scan 1: 1. For each access sequence S of the WAS 1.1. For each event in E 1.1.1. For each event of an access sequence of WAS. If selected event of access sequence is equal to selected event of E then a. event count = event count + 1 b. continue with the next event in E. 2. For each event in E if event qualify the threshold add that event in the set of frequent event FE. Scan 2: 1. Create a root node for T 2. For each access sequence S in the access sequence database WAS do (a) Extract frequent subsequence S’ from S by removing all events appearing in S but not in FE. Let S' = s1s2….sn , where si (1≤ i ≤ n) are events in S’. Let current node is a pointer that is currently pointing to the root of T. (b) For i=1 to n do, if current node has a child labeled si , increase the count of si by 1 and make current node point to si , else create a new child node with label= si , count =1, parent pointer = current node and make current node point to the new node, and insert it into the si -queue 3. Return (T);
TID | Web access sequence | Frequent subsequence |
100 | abdac | abac |
200 | eaebcac | abcac |
300 | babfaec | babac |
400 | afbacfc | abacc |
最后在树中进行搜索频发序列,伪代码如下:
B. Algorithm 2 (Mining all ξ-patterns in doubly linked tree) Input: a Doubly linked tree T and support threshold ξ. Output: the complete set of ξ-patterns. Method: 1. If doubly linked tree T has only one branch, return all the unique combinations of nodes in that branch 2. Initialize Web access pattern set WAP=φ. Every event in T itself is a Web access pattern, insert them into WAP 3. For each event ei in T, a. Construct a conditional sequence base of ei , i.e.PS( ei ), by following the ei -queue, count conditional frequent events at the same time. b. If the set of conditional frequent events is not empty, build a conditional doubly linked tree for ei over PS( ei ) using algorithm 1. Recursively mine the conditional doubly linked tree c. For each Web access pattern returned from mining the conditional doubly linked tree, concatenate ei to it and insert it into WAP. 4. Return WAP.
最后我们就会得到频繁项如下:
{c, aac, bac, abac, ac, abc, bc, b, ab, a, aa,ba, aba}
PLWAP-Tree
人们在运用WAP-Tree的过程中,发现其在时间复杂度上并不理想,请看原文《PLWAP Sequential Mining: Open Source Code》中对PLWAP-Tree的一段介绍:
看图应该很容易懂,这里提示几点方便大家理解:
1、上图中比如{c:1:1110}表示这个节点代表的字符是c,而其权重是1,即只有1个c,而1110表示这个节点的编号。编号规则是
①根节点编号为空
②对于节点u其编号为s,设其子节点从左到右分别为v1,v2,v3……,则其编号分别s1,s10,s100……以此类推,即每次多一个0
这样判断p是否是q的后辈点的方法就是:在q的后面加一个“1”,然后判断是否是p的前缀,如果是则p是q的后辈节点
2、关于Head-Table,在PLWAP-Tree中其是在整棵树构建成功后再构建PLWAP-Tree链表的(和WAP-Tree的不同,希望大家好好体会),构建的方案是按照先序遍历的顺序(上图的虚线部分)。大家可以和WAP-Tree的Head-Table的虚线箭头做一下对比,很容易就能发现它们的区别。
PLWAP-Tree代码实现(c++)
这里放上我自己实现的PLWAP-Tree代码,供给大家参考
#include <stdio.h> #include <tchar.h> #include <string> #include <cstring> #include <vector> #include <iostream> #include <string> #include <map> #define alp_maxn 130 using namespace std; struct Node{ char alp; int alp_count; struct Node * nex; vector<struct Node*>son; string seq; Node(int _siz, char _alp); }; class PLWAPTREE{ private: Node * root; //the root of the plwap-tree Node * Head_Table[alp_maxn]; //Head_Table Node * alp_las[alp_maxn]; int lamda; //lamda int alp_tot; //the number of valid words char alp_link[alp_maxn]; //discratization int alp_count[alp_maxn]; //discratization map<char, int>alp_translate; //discratization public: vector<string>reads; vector<string>feq; //the frequent words void Init(int _lamda); void AddString(string st); void BuildTree(); void BuildTree(Node *s, string id); void SearchFeq(vector<string>R, string now_feq); void print_tree(Node *s); //debug only... Node * get_root(); //debug only... }; Node * PLWAPTREE::get_root(){ return root; } void PLWAPTREE::print_tree(Node *s){ if (s == NULL) return; cout << "char : " << s->alp << " seq : " << s->seq << " alp_count : " << s->alp_count; if (s->nex != NULL) cout << " nex_seq :" << s->nex->seq << endl; else cout << endl; for (int i = 0; i < alp_tot; i++) print_tree(s->son[i]); } Node::Node(int _siz, char _alp = -1){ nex = NULL; son.clear(); while (_siz--) { son.push_back(NULL); } alp = _alp; alp_count = 0; } void PLWAPTREE::Init(int _lamda){ root = new Node(alp_maxn); for (int i = 0; i < alp_maxn; i++){ Head_Table[i] = NULL; alp_count[i] = 0; alp_las[i] = NULL; } reads.clear(); feq.clear(); alp_translate.clear(); alp_tot = 0; lamda = _lamda; } void PLWAPTREE::AddString(string st){ int alp_tmp[alp_maxn]; memset(alp_tmp, 0, sizeof(alp_tmp)); for (int i = 0; i < st.length(); i++) alp_tmp[(int)st[i]] = 1; for (int i = 0; i < alp_maxn; i++) alp_count[i] += alp_tmp[i]; reads.push_back(st); } void PLWAPTREE::BuildTree(){ for (int i = 0; i < alp_maxn; i++){ if (alp_count[i] >= lamda){ alp_link[alp_tot] = (char)i; alp_translate[(char)i] = alp_tot; alp_tot++; } } //discretization to save memory and time printf("-discretization success !\n"); for (int i = 0; i < reads.size(); i++){ string now_string = reads[i]; Node * pnow = root; for (int j = 0; j < now_string.length(); j++){ if (alp_count[(int)now_string[j]] < lamda) continue; int sig = alp_translate[now_string[j]]; if (pnow->son[sig] == NULL){ Node * tmp = new Node(alp_tot, now_string[j]); pnow->son[sig] = tmp; } pnow = pnow->son[sig]; pnow->alp_count++; } } printf("-trip-build success !\n"); BuildTree(root, ""); } void PLWAPTREE::BuildTree(Node *s, string id){ string seq = id + "1"; for (int i = 0; i < alp_tot; i++){ if (s->son[i] == NULL) continue; if (Head_Table[i] == NULL){ Head_Table[i] = s->son[i]; } if (alp_las[i] != NULL){ alp_las[i]->nex = s->son[i]; } alp_las[i] = s->son[i]; s->son[i]->seq = seq; BuildTree(s->son[i], seq); seq = seq + "0"; } } void PLWAPTREE::SearchFeq(vector<string>R, string now_feq){ for (int i = 0; i < alp_tot; i++){ Node * p = Head_Table[i]; bool flag = true; if (R.size() != 0){ flag = false; while (p != NULL){ for (int j = 0; j < R.size(); j++){ string str = R[j] + "1"; int sig = p->seq.find(str); if (sig == 0){ flag = true; break; } } if (flag) break; p = p->nex; } } if (flag == false) continue; int C = p->alp_count; string S = p->seq; vector<string>Rs; Rs.clear(); Rs.push_back(p->seq); for (p = p->nex; p != NULL; p = p->nex){ bool is_son_of_R = false; bool is_son_of_S = false; if (R.size() == 0) is_son_of_R = true; else{ for (int j = 0; j < R.size(); j++){ string str = R[j] + "1"; int sig = p->seq.find(str); if (sig == 0){ is_son_of_R = true; break; } } } string str = S + "1"; int sig = p->seq.find(str); if (sig == 0){ is_son_of_S = true; } if (is_son_of_R == true && is_son_of_S == false){ C += p->alp_count; Rs.push_back(p->seq); S = p->seq; } } if (C >= lamda){ feq.push_back(now_feq + alp_link[i]); SearchFeq(Rs, now_feq + alp_link[i]); } } } int main(){ PLWAPTREE pt; pt.Init(3); printf("Init success !\n"); pt.AddString("abdac"); pt.AddString("eaebcac"); pt.AddString("babfaec"); pt.AddString("afbacfc"); printf("read string success !\n"); pt.BuildTree(); printf("Buile tree success !\n"); /* printf("tree just like :\n"); pt.print_tree(pt.get_root()); */ vector<string>tmp; tmp.clear(); pt.SearchFeq(tmp, ""); printf("result : \n"); for (int i = 0; i < pt.feq.size(); i++) cout << pt.feq[i] << endl; getchar(); return 0; }