求知求真

‘tis for thee.

博客园 首页 新随笔 联系 订阅 管理

\(\mathscr{Df1}:\varepsilon\)\(n\)次单位根,即\(\varepsilon^n=1\),则存在最小的正整数\(k\)使得\(\varepsilon^k=1\)(由带余除法,\(k\mid n\)),则称\(k\)\(\varepsilon\)的阶,记作\(\operatorname{ord}(\varepsilon)=k\)。特别地,若\(\operatorname{ord}(\varepsilon)=n\),则称\(\varepsilon\)\(n\)次本原单位根(有\(\varphi(n)\)个)。
\(\mathscr{Df2}:\varepsilon_n=e^{\frac{2\pi i}{n}},\Phi_n(x)\triangleq\prod\limits_{1\le k\le n,\gcd(n,k)=1}(x-\varepsilon_n^k)=\prod\limits_{\operatorname{ord}(\varepsilon)=n}(x-\varepsilon)\)称为\(n\)次分圆多项式。(第二个等号是因为当且仅当\(n,k\)互素时,\(e^{\frac{2ik\pi}{n}}\)为本原单位根)
性质:

  1. \(\Phi_n(x)\)为首一的复系数多项式;
  2. 对于素数\(p\)\(\Phi_{p^k}(x)=\frac{x^{p^k}-1}{x^{p^{k-1}}-1}\)

\(\mathscr{Thm1}:x^n-1=\prod\limits_{d\mid n}\Phi_d(x)\)
\(\mathscr{Pf}:x^n-1=\prod\limits_{\varepsilon^n=1}(x-\varepsilon)=\prod\limits_{d\mid n}\prod\limits_{\operatorname{ord}(\varepsilon)=d}(x-\varepsilon)=\prod\limits_{d\mid n}\Phi_d(x)\quad\Box\)

\(\mathscr{Thm2}:\forall n\ge2,\Phi_n(0)=1\)
\(\mathscr{Pf1}:\Phi_n(0)=\prod\limits_{\operatorname{ord}(\varepsilon)=n}-\varepsilon=(-1)^{\varphi(n)}\cdot\prod\limits_{1\le k\le \frac{n}{2},\gcd(k,n)=1}(\varepsilon_n^k\cdot\varepsilon_n^{n-k})=(-1)^{\varphi(n)}=1(n\ge3);\Phi_2(0)=0+1=1\quad\Box\)
\(\mathscr{Pf2}:\)\(n\)归纳。\(n=2\)\(\Phi_2(0)=0+1=1\)。设\(<n\)成立,\(n\)时,\(\Phi_n(0)=\frac{0^n-1}{\prod\limits_{d\mid n,d\ne n}\Phi_d(0)}=\frac{-1}{0-1}=1\quad\Box\)


\(\mathscr{Thm3}:\Phi_n(x)\in\mathbb{Z}[X]\)
\(\mathscr{Pf}:\)\(n\)归纳。\(n=1\)\(\Phi_1(x)=x-1\),下设\(<n\)成立,\(n\)时,记\(\prod\limits_{d\mid n,d\ne n}\Phi_d(x)=g(x)\),则\(\Phi_n(x)\cdot g(x)=x^n-1\),由归纳假设,\(g(x)\)为首一的整系数多项式。只需证明下面的引理就证明了原命题:
\(\mathscr{Lm}:f\in\mathbb{Z}[X],g\in\mathbb{C}[X],\)二者皆首一,且\(fg\in\mathbb{Z}[X]\),则\(g\in\mathbb{Z}[X]\)
\(\mathscr{Pf}:令g(x)=\sum\limits_{i=0}^ng_i x^i(g_i\in\mathbb{C},g_n=1),f(x)=\sum\limits_{i=0}^mf_ix^i(f_i\in\mathbb{Z},f_m=1),则由题,考虑次数为m+n-1的项知g_{n-1}\in\mathbb{Z},之后同理归纳即证。\quad\Box\)


\(\mathscr{Thm4}:\Phi_n(x)在\mathbb{Z}[X]中不可约。\)

posted on 2023-09-24 22:56  Schwefel  阅读(146)  评论(0编辑  收藏  举报