CF715B Complete The Graph 题解
Description
给 \(n\) 点 \(m\) 边的无向图,\(L\),\(s\),\(t\)。
修改 \(m\) 条边中边为 \(0\) 的边,使满足 \(s,t\) 的最短路长度是 \(L\),且输出答案的时候边为 \(0\) 的边的权值必须在 \([1,10^{18}]\) 内。
Solution
考虑怎么判有无解。
容易发现将所有未知边边权设为 \(10^{18}\),如果最短路小于 \(L\),或者未知边设为 \(1\) 后最短路大于 \(L\) 时无解,否则有解。因为每次只将一条边的长度加 \(1\) 后最短路至多增加 \(1\)。
不妨设 \(dis_i\) 表示 \(i\) 在未知边边权为 \(1\) 时与 \(s\) 的距离,\(det\) 表示 \(L-dis_t\)。容易发现我们的任务就是让 \(dis_t\) 增加 \(det\)。
考虑再进行一次 dijkstra,如果当前松弛的边 \((u,v,w)\) 满足 \(dis_{v}+det>dis^{'}_{u}+w\) 且这条边未确定,就将 \(w\) 调整为 \(dis_{v}+det-dis^{'}_u\),这样的话每个点的最短路一定不会增加超过 \(det\),且 \(dis_t\) 一定能增加 \(det\)。
时间复杂度:\(O((n+m)\log n)\)。
Code
#include <bits/stdc++.h>
#define int int64_t
const int kMaxN = 1e3 + 5, kMaxM = 1e4 + 5;
int n, m, L, s, t, det;
int u[kMaxM], v[kMaxM], w[kMaxM];
int dis1[kMaxN], dis2[kMaxN];
bool del[kMaxM];
std::vector<std::tuple<int, int, int>> G[kMaxN];
int dijkstra1(int *dis) {
static bool vis[kMaxN];
for (int i = 1; i <= n; ++i) G[i].clear();
for (int i = 1; i <= m; ++i) {
if (w[i]) {
G[u[i]].emplace_back(v[i], w[i], i), G[v[i]].emplace_back(u[i], w[i], i);
}
}
for (int i = 1; i <= n; ++i) {
dis[i] = 1e18, vis[i] = 0;
}
std::priority_queue<std::pair<int, int>> q;
q.emplace(0, s), dis[s] = 0;
for (; !q.empty();) {
int u = q.top().second; q.pop();
if (vis[u]) continue;
vis[u] = 1;
for (auto [v, w, id] : G[u]) {
if (dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
q.emplace(-dis[v], v);
}
}
}
return dis[t];
}
int dijkstra2(int *dis) {
static bool vis[kMaxN];
for (int i = 1; i <= n; ++i) G[i].clear();
for (int i = 1; i <= m; ++i) {
if (w[i]) {
G[u[i]].emplace_back(v[i], w[i], i), G[v[i]].emplace_back(u[i], w[i], i);
}
}
for (int i = 1; i <= n; ++i) {
dis[i] = 1e18, vis[i] = 0;
}
std::priority_queue<std::pair<int, int>> q;
q.emplace(0, s), dis[s] = 0;
for (; !q.empty();) {
int u = q.top().second; q.pop();
if (vis[u]) continue;
vis[u] = 1;
for (auto [v, w, id] : G[u]) {
if (del[id] && dis1[v] + det > dis[u] + ::w[id])
::w[id] = dis1[v] + det - dis[u];
if (dis[v] > dis[u] + ::w[id]) {
dis[v] = dis[u] + ::w[id];
q.emplace(-dis[v], v);
}
}
}
return dis[t];
}
void print() {
std::cout << "YES\n";
for (int i = 1; i <= m; ++i)
std::cout << u[i] - 1 << ' ' << v[i] - 1 << ' ' << w[i] << '\n';
}
void dickdreamer() {
std::cin >> n >> m >> L >> s >> t;
++s, ++t;
for (int i = 1; i <= m; ++i) {
std::cin >> u[i] >> v[i] >> w[i];
++u[i], ++v[i];
if (!w[i]) del[i] = 1, w[i] = 1e18;
}
int dis = dijkstra1(dis1);
if (dis < L) return void(std::cout << "NO\n");
if (dis == L) return print();
for (int i = 1; i <= m; ++i)
if (del[i])
w[i] = 1;
int now = dijkstra1(dis1);
if (now > L) return void(std::cout << "NO\n");
det = L - now;
dijkstra2(dis2);
print();
}
int32_t main() {
#ifdef ORZXKR
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0);
int T = 1;
// std::cin >> T;
while (T--) dickdreamer();
// std::cerr << 1.0 * clock() / CLOCKS_PER_SEC << "s\n";
return 0;
}