大数据学习日志——mapreduce过程以及java代码通过mapreduce实现wordcount

首先看mapreduce流程:

除去输入和输出之后,数据计算只有三个步骤,map,combine,reduce,其中只有map和reduce过程是必要过程,combine若不设置可以略过这一计算过程

 

首先map过程从数据源读取数据,根据设置的mapper数多个核心同时读取数据,然后在combine过程对每个mapper进行聚合处理操作,map和combine过程输出的数据,将会进行一次重分区shuffle过程,将数据全聚合后根据规则再进行分区放入Reducer中进行计算,默认是根据默认设置的分区数然后计算数据key的哈希值进行分区(数据都是key-value形式),此时可能会存在数据倾斜操作,即当中一些reducer需要处理的数据量极大,而一些处理的数据极小,这些就需要优化过程,这里暂时不谈。最后在输出时,每个reducer对应一个输入源

 

整个mapreduce便是上述流程,编码过程就容易理解了:

源数据输入mapper,输出到combine(不必要),再从combiner输出到reducer,最后reducer输出

可见mapper的输出类型时combiner的输入类型,mapper和combiner的输出类型时reducer得到输入类型,并且数据都是key-value形式传输

然后mapper类和reducer类,的参数都是如下参数格式<输入key,输入value,输出value,输出key>,注意combiner也是继承自reducer类

注意,初始化输入给mapper的类,key才是从源数据读取到的数据,value时数据偏移量(若是文本文字,即是与第一个位置偏差值)信息

 

最后编写时候,需要实现tool类重写run方法,并且设置hadoop的参数,可以继承configured类自动加载配置文件中的hadoop配置(此时一定要将配置文件放到工程配置文件目录中)。

run方法中只需要记录一下步骤即可,创建Job类,设置需要运行的class,并且设置好configuration类,设置输入类型和路劲,设置mapper输出类型,设置combiner输出类型,设置reducer输出类型,设置输出类型和路径。

注意:会有人奇怪我什么不设置mapper、combiner、reducer输入类型,上述文字已说过,因为流程的上一步的输出类型即是下一步的输入类型,所以路劲的输出类型即是mapper的输入类型,combiner、reducer同样如此。

 

以下是一个mapreduce实现wordcount的案例,最后打成jar包,扔到hadoop执行即可。

  1 package mapreduce;
  2 
  3 import org.apache.hadoop.conf.Configuration;
  4 import org.apache.hadoop.fs.Path;
  5 import org.apache.hadoop.io.IntWritable;
  6 import org.apache.hadoop.io.LongWritable;
  7 import org.apache.hadoop.io.Text;
  8 import org.apache.hadoop.mapreduce.Job;
  9 import org.apache.hadoop.mapreduce.Mapper;
 10 import org.apache.hadoop.mapreduce.Reducer;
 11 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 13 
 14 import java.io.IOException;
 15 import java.util.Iterator;
 16 import java.util.StringTokenizer;
 17 
 18 public class MyMapReduce {
 19     //1自己的map类
 20     //继承mapper类,<输入key,输入value,输出value,输出key>
 21     public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
 22         //每个key设置输出value为1
 23         IntWritable i = new IntWritable(1);
 24         Text keyStr = new Text();
 25 
 26         @Override
 27         protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
 28             //TextInputFormat是Hadoop默认的数据输入格式,但是它只能一行一行的读记录
 29 
 30             StringTokenizer itr = new StringTokenizer(value.toString());
 31             while (itr.hasMoreTokens()) {
 32                 keyStr.set(itr.nextToken());
 33                 context.write(keyStr, i);
 34             }
 35 
 36         }
 37     }
 38 
 39     //2自己的reducer类
 40     //继承reducer类,<输入key,输入value,输出value,输出key>
 41     //reducer类的输入,就是mapper的输出
 42     //mapper类map方法的数据输入到Reduce类group方法中,对key的value进行分组得到values,再放入reduce方法中
 43     public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
 44         IntWritable countWritable = new IntWritable();
 45 
 46         @Override
 47         protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
 48             String keyStr = key.toString();
 49             //在map中每个key对应的value为1,
 50             //那么reduce每个key对应的集合便是重复key的个数的长度,并且每个值为1
 51             //即集合元素值相加即为key的数量
 52             int count = 0;
 53             Iterator<IntWritable> it = values.iterator();
 54             while (it.hasNext()) {
 55                 count += it.next().get();
 56             }
 57             countWritable.set(count);
 58             System.out.println(keyStr + "---" + count);
 59             context.write(key, countWritable);
 60         }
 61     }
 62 
 63     //3运行类
 64     public int run(String[] args) throws Exception {
 65         //hadoop配置上下文
 66         Configuration conf = new Configuration();
 67         //这里要是没有把配置文件放入resources中,需要手动添加配置文件,或者添加配置参数
 68 //        conf.addResource("core-site.xml");
 69 //        conf.addResource("hdfs-site.xml");
 70         //通过上下文构建job实例,并传入任务名称
 71         Job job = Job.getInstance(conf, this.getClass().getSimpleName());
 72         //设置reduce数量
 73         job.setNumReduceTasks(3);
 74         //必须添加,否则本地运行没问他,服务器报错
 75         job.setJarByClass(MyMapReduce.class);
 76         //设置任务读取数据
 77         //调用时传入参数,第一个参数为路径输入参数
 78         Path inputPath = new Path(args[0]);
 79         FileInputFormat.addInputPath(job, inputPath);
 80 
 81         //调用时传入参数,第二个参数为路径输出参数
 82         Path outputPath = new Path(args[1]);
 83         FileOutputFormat.setOutputPath(job, outputPath);
 84 
 85         //设置mapper类参数
 86         job.setMapperClass(MyMapper.class);
 87         job.setMapOutputKeyClass(Text.class);
 88         job.setMapOutputValueClass(IntWritable.class);
 89 
 90         //设置reducer类参数
 91         job.setReducerClass(MyReducer.class);
 92         job.setOutputKeyClass(Text.class);
 93         job.setOutputValueClass(IntWritable.class);
 94         //设置任务保存结果数据
 95 
 96         //设置combiner类,同reduce一样,同样继承reduce类
 97         //combiner将多个map的数据单独处理,reduce处理所有map的所有数据
 98         //job.setCombinerClass();
 99         boolean isSuccess = job.waitForCompletion(true);
100         return isSuccess ? 0 : 1;
101     }
102 
103     public static void main(String[] args) throws Exception {
104 
105         //将传入的第一个参数作为文件输入参数,第二个参数作为文件输出参数
106         System.out.println(args[0]);
107         System.out.println(args[1]);
108         MyMapReduce mr = new MyMapReduce();
109         int success = -1;
110         success = mr.run(args);
111         System.out.println(success);
112 
113     }
114 }

 

posted on 2019-03-24 10:20  SaltFishYe  阅读(304)  评论(0编辑  收藏  举报

导航