哈利路亚
Let's take one million years picnic
欢迎来到Sean Cleveland的博客
软工终结日报-paddle图像数据预处理 6/1

今天为了配合目标检测算法的特殊需要,我们要进行同样特殊的图像预处理

之前的预测是将图像转化为对应的rgb值,而今天这个在那之前需要一个图像拆分的过程

# coding=utf-8
import random


class sampler():
    def __init__(self, max_sample, max_trial, min_scale, max_scale,
                 min_aspect_ratio, max_aspect_ratio, min_jaccard_overlap,
                 max_jaccard_overlap):
        # 最多样本量
        self.max_sample = max_sample
        # 最多实验量
        self.max_trial = max_trial
        # 最小规模
        self.min_scale = min_scale
        # 最大规模
        self.max_scale = max_scale
        # 最小的纵横比
        self.min_aspect_ratio = min_aspect_ratio
        # 最大的纵横比
        self.max_aspect_ratio = max_aspect_ratio
        # 最小重叠部分
        self.min_jaccard_overlap = min_jaccard_overlap
        # 最大重叠部分
        self.max_jaccard_overlap = max_jaccard_overlap


class bbox():
    # 定义目标框的大小
    def __init__(self, xmin, ymin, xmax, ymax):
        self.xmin = xmin
        self.ymin = ymin
        self.xmax = xmax
        self.ymax = ymax


def bbox_area(src_bbox):
    # 计算目标框的面积
    width = src_bbox.xmax - src_bbox.xmin
    height = src_bbox.ymax - src_bbox.ymin
    return width * height


def generate_sample(sampler):
    scale = random.uniform(sampler.min_scale, sampler.max_scale)
    min_aspect_ratio = max(sampler.min_aspect_ratio, (scale**2.0))
    max_aspect_ratio = min(sampler.max_aspect_ratio, 1 / (scale**2.0))
    aspect_ratio = random.uniform(min_aspect_ratio, max_aspect_ratio)
    bbox_width = scale * (aspect_ratio**0.5)
    bbox_height = scale / (aspect_ratio**0.5)
    xmin_bound = 1 - bbox_width
    ymin_bound = 1 - bbox_height
    xmin = random.uniform(0, xmin_bound)
    ymin = random.uniform(0, ymin_bound)
    xmax = xmin + bbox_width
    ymax = ymin + bbox_height
    sampled_bbox = bbox(xmin, ymin, xmax, ymax)
    return sampled_bbox


def jaccard_overlap(sample_bbox, object_bbox):
    if sample_bbox.xmin >= object_bbox.xmax or \
            sample_bbox.xmax <= object_bbox.xmin or \
            sample_bbox.ymin >= object_bbox.ymax or \
            sample_bbox.ymax <= object_bbox.ymin:
        return 0
    intersect_xmin = max(sample_bbox.xmin, object_bbox.xmin)
    intersect_ymin = max(sample_bbox.ymin, object_bbox.ymin)
    intersect_xmax = min(sample_bbox.xmax, object_bbox.xmax)
    intersect_ymax = min(sample_bbox.ymax, object_bbox.ymax)
    intersect_size = (intersect_xmax - intersect_xmin) * (
        intersect_ymax - intersect_ymin)
    sample_bbox_size = bbox_area(sample_bbox)
    object_bbox_size = bbox_area(object_bbox)
    overlap = intersect_size / (
        sample_bbox_size + object_bbox_size - intersect_size)
    return overlap


def satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
    '''
    满足样品的约束
    :param sampler:
    :param sample_bbox:
    :param bbox_labels:
    :return:
    '''
    if sampler.min_jaccard_overlap == 0 and sampler.max_jaccard_overlap == 0:
        return True
    for i in range(len(bbox_labels)):
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2],
                           bbox_labels[i][3], bbox_labels[i][4])
        overlap = jaccard_overlap(sample_bbox, object_bbox)
        if sampler.min_jaccard_overlap != 0 and \
                overlap < sampler.min_jaccard_overlap:
            continue
        if sampler.max_jaccard_overlap != 0 and \
                overlap > sampler.max_jaccard_overlap:
            continue
        return True
    return False


def generate_batch_samples(batch_sampler, bbox_labels):
    '''
    按照一个batch生成一个样本
    :param batch_sampler:
    :param bbox_labels:
    :return:
    '''
    sampled_bbox = []
    index = []
    c = 0
    for sampler in batch_sampler:
        found = 0
        # 获取最大的样本量
        for i in range(sampler.max_trial):
            if found >= sampler.max_sample:
                break
            sample_bbox = generate_sample(sampler)
            if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
                sampled_bbox.append(sample_bbox)
                found = found + 1
                index.append(c)
        c = c + 1
    return sampled_bbox


def clip_bbox(src_bbox):
    # 修剪目标框的大小
    src_bbox.xmin = max(min(src_bbox.xmin, 1.0), 0.0)
    src_bbox.ymin = max(min(src_bbox.ymin, 1.0), 0.0)
    src_bbox.xmax = max(min(src_bbox.xmax, 1.0), 0.0)
    src_bbox.ymax = max(min(src_bbox.ymax, 1.0), 0.0)
    return src_bbox


def meet_emit_constraint(src_bbox, sample_bbox):
    center_x = (src_bbox.xmax + src_bbox.xmin) / 2
    center_y = (src_bbox.ymax + src_bbox.ymin) / 2
    if center_x >= sample_bbox.xmin and \
        center_x <= sample_bbox.xmax and \
        center_y >= sample_bbox.ymin and \
        center_y <= sample_bbox.ymax:
        return True
    return False


def transform_labels(bbox_labels, sample_bbox):
    proj_bbox = bbox(0, 0, 0, 0)
    sample_labels = []
    for i in range(len(bbox_labels)):
        sample_label = []
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2],
                           bbox_labels[i][3], bbox_labels[i][4])
        if not meet_emit_constraint(object_bbox, sample_bbox):
            continue
        sample_width = sample_bbox.xmax - sample_bbox.xmin
        sample_height = sample_bbox.ymax - sample_bbox.ymin
        proj_bbox.xmin = (object_bbox.xmin - sample_bbox.xmin) / sample_width
        proj_bbox.ymin = (object_bbox.ymin - sample_bbox.ymin) / sample_height
        proj_bbox.xmax = (object_bbox.xmax - sample_bbox.xmin) / sample_width
        proj_bbox.ymax = (object_bbox.ymax - sample_bbox.ymin) / sample_height
        proj_bbox = clip_bbox(proj_bbox)
        if bbox_area(proj_bbox) > 0:
            sample_label.append(bbox_labels[i][0])
            sample_label.append(float(proj_bbox.xmin))
            sample_label.append(float(proj_bbox.ymin))
            sample_label.append(float(proj_bbox.xmax))
            sample_label.append(float(proj_bbox.ymax))
            sample_label.append(bbox_labels[i][5])
            sample_labels.append(sample_label)
    return sample_labels


def crop_image(img, bbox_labels, sample_bbox, image_width, image_height):
    '''
    裁剪图像
    :param img: 图像
    :param bbox_labels: 所有的标注信息
    :param sample_bbox: 对应一个的标注信息
    :param image_width: 图像原始的宽
    :param image_height: 图像原始的高
    :return:裁剪好的图像和其对应的标注信息
    '''
    sample_bbox = clip_bbox(sample_bbox)
    xmin = int(sample_bbox.xmin * image_width)
    xmax = int(sample_bbox.xmax * image_width)
    ymin = int(sample_bbox.ymin * image_height)
    ymax = int(sample_bbox.ymax * image_height)
    sample_img = img[ymin:ymax, xmin:xmax]
    sample_labels = transform_labels(bbox_labels, sample_bbox)
    return sample_img, sample_labels

 

posted on 2021-06-01 20:58  哈利路亚#0207  阅读(117)  评论(0编辑  收藏  举报
Live2D