【ybt金牌导航1-3-3】【luogu P4072】征途

征途

题目链接:ybt金牌导航1-3-3 / luogu P4072

题目大意

有 n 个值,你要把它划分成 m 段,使得把每段的值加起来得到段的值,段值的方差最小。
输出这个最小方差乘 m^2,可证明这个是整数。

思路

.首先我们考虑化简式子:(设分段之后每一段的长度是 \(d_i\)\(\overline{x}\) 是它们的平均值,即 \(\overline{x}=\frac{\sum_{i=1}^{m}d_i}{m}\)
\(s^2\times m^2\)
\(=\dfrac{\sum\limits_{i=1}^{m}(d_i-\overline{x})^2}{m}\times m^2\)
\(=\sum\limits_{i=1}^{m}(d_i-\overline{x})^2\times m\)
\(=\sum\limits_{i=1}^{m}(d_i^2-2\times d_i\times \overline{x}+\overline{x}^2)\times m\)
\(=m\times\sum\limits_{i=1}^{m}{d_i^2}+\sum\limits_{i=1}^{m}(-2\times d_i\times \frac{\sum_{i=1}^{m}d_i}{m}+(\frac{\sum_{i=1}^{m}d_i}{m})^2)\times m\)
\(=m\times\sum\limits_{i=1}^{m}{d_i^2}+\sum\limits_{i=1}^{m}(-2\times d_i\times \sum_{i=1}^{m}d_i+(\frac{\sum_{i=1}^{m}d_i}{m})(\sum_{i=1}^{m}d_i))\)

我们再弄一个 \(sum=\sum_{i=1}^{m}d_i\)
\(=m\times\sum\limits_{i=1}^{m}{d_i^2}+\sum\limits_{i=1}^{m}(-2\times d_i\times sum+(\frac{sum}{m})\times sum)\)
\(=m\times\sum\limits_{i=1}^{m}{d_i^2}+(-2)\times \sum\limits_{i=1}^{m}d_i\times sum+\sum\limits_{i=1}^{m}(\frac{1}{m})\times sum^2\)
\(=m\times\sum\limits_{i=1}^{m}{d_i^2}+(-2)\times sum\times sum+sum^2\)
\(=m\times\sum\limits_{i=1}^{m}{d_i^2}-2\times sum^2+sum^2\)
\(=m\times\sum\limits_{i=1}^{m}{d_i^2}-sum^2\)

那你会发现,你就是要让 \(\sum\limits_{i=1}^{m}d_i^2\) 最小。

那你可以设 \(f_{i,j}\) 为前 \(i\) 个数划分成了 \(j\) 段的最小值。
那会有这个方程:\(f_{i,j}=\min\limits_{k=1}^{i-1}\{f_{k,j-1}+(s_i-s_k)^2\}\)

那可以看出它是有单调性的,那我们就直接上分治,做就好了。

代码

#include<cstdio>
#include<iostream>
#define ll long long

using namespace std;

int n, m;
ll a[3001], s[3001], f[3001][3001];

void slove(int op, int l, int r, int L, int R) {//分治
	int mid = (l + r) >> 1, pl = 0;
	ll minn = 1e15;
	for (int i = L; i <= R && i < mid; i++) {//对于处理范围中间的点用枚举答案范围求答案
		ll now = f[i][op - 1] + (s[mid] - s[i]) * (s[mid] - s[i]);
		if (now < minn) {
			pl = i;
			minn = now;
		}
	}
	
	f[mid][op] = minn;
	
	if (l < mid) slove(op, l, mid - 1, L, pl);
	if (mid < r) slove(op, mid + 1, r, pl, R);
}

int main() {
	scanf("%d %d", &n, &m);
	for (int i = 1; i <= n; i++) {
		scanf("%lld", &a[i]);
		s[i] = s[i - 1] + a[i];
	}
	
	for (int i = 1; i <= n; i++)//预处理只有一段的
		f[i][1] = s[i] * s[i];
	for (int i = 2; i <= m; i++)
		slove(i, 1, n, 1, n);
	
	printf("%lld", f[n][m] * m - s[n] * s[n]);//记得套回公式里
	
	return 0;
} 
posted @ 2021-04-18 18:15  あおいSakura  阅读(22)  评论(0编辑  收藏  举报