【ybt高效进阶4-2-4】【POJ 3468】区间修改区间查询 / A Simple Problem with Integers

区间修改区间查询 / A Simple Problem with Integers

题目链接:ybt高效进阶4-2-4 / POJ 3468

题目大意

给你一个数组,要你维护区间加值和区间求和两个操作。

思路

这题其实可以用线段树来做,但是线段树长度比较大,我们考虑能不能用树状数组来做。

树状数组一般只能实现单点加值,我们考虑把区间加值化成单点加值。自然会想到用差分。

那我们考虑如何通过差分搞出答案:(先不管树状数组,然后到后面可以用树状数组就用它优化)
设差分数组是 \(d_i\),真实维护的数是 \(a_i\),那你可以得到 \(a_i=\sum\limits_{j=1}^{i}d_j\)
那求区间和自然是两个前缀和相减的方法,就前求前缀和:\(\sum\limits_{i=1}^{n}a_i=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{i}d_j\)

然后你观察每个 \(d_j\) 出现的次数,\(d_i\) 出现 \(1\) 次,\(d_{i-1}\) 是两次,以此类推 \(d_1\)\(i\) 次。
那我们可以弄成这个样子:
\(\sum\limits_{i=1}^{n}a_i=\sum\limits_{i=1}^{n}(d_i\times(n+1)-d_i\times i)\)

那可以看到,我们要快速求两个值,\(\sum\limits_{i=1}^{n}d_i\)\(\sum\limits_{i=1}^{n}(d_i\times i)\),那就弄两个树状数组来维护即可。

然后因为你是差分,你插入初始数的时候要记得要在后面一个位置减回去。

代码

ybt 版

#include<cstdio>
#define ll long long

using namespace std;

int n, q, x, op, l, r;
ll tree[1000001], treei[1000001];

void add(int x, ll y) {
	int m = x;
	for (; x <= n; x += x & (-x)) {
		tree[x] += y;
		treei[x] += y * m;
	}
}

ll get_ans(int x) {
	ll re = 0;
	int m = x;
	for (; x; x -= x & (-x)) { 
		re += tree[x] * (m + 1) - treei[x];
	}
	return re;
}

int main() {
	scanf("%d %d", &n, &q);
	
	for (int i = 1; i <= n; i++) {
		scanf("%d", &x);
		add(i, 1ll * x);
		add(i + 1, -1ll * x);
	}
	
	for (int i = 1; i <= q; i++) {
		scanf("%d", &op);
		if (op == 1) {
			scanf("%d %d %d", &l, &r, &x);
			add(l, 1ll * x);
			add(r + 1, -1ll * x); 
		}
		else {
			scanf("%d %d", &l, &r);
			printf("%lld\n", get_ans(r) - get_ans(l - 1));
		}
	}
	
	return 0;
}

POJ 版

#include<cstdio>
#define ll long long

using namespace std;

int n, q, x, l, r;
char op;
ll tree[1000001], treei[1000001];

void add(int x, ll y) {
	int m = x;
	for (; x <= n; x += x & (-x)) {
		tree[x] += y;
		treei[x] += y * m;
	}
}

ll get_ans(int x) {
	ll re = 0;
	int m = x;
	for (; x; x -= x & (-x)) { 
		re += tree[x] * (m + 1) - treei[x];
	}
	return re;
}

int main() {
	scanf("%d %d", &n, &q);
	
	for (int i = 1; i <= n; i++) {
		scanf("%d", &x);
		add(i, 1ll * x);
		add(i + 1, -1ll * x);
	}
	
	for (int i = 1; i <= q; i++) {
		op = getchar();
		while (op != 'Q' && op != 'C') op = getchar();
		if (op == 'C') {
			scanf("%d %d %d", &l, &r, &x);
			add(l, 1ll * x);
			add(r + 1, -1ll * x); 
		}
		else {
			scanf("%d %d", &l, &r);
			printf("%lld\n", get_ans(r) - get_ans(l - 1));
		}
	}
	
	return 0;
}
posted @ 2021-03-15 21:16  あおいSakura  阅读(61)  评论(0编辑  收藏  举报