【ybt高效进阶2-4-3】【luogu P4551】最长异或路径
最长异或路径
题目链接:ybt高效进阶2-4-3 / luogu P4551
题目大意
给定一棵 n 个点的带权树,结点下标从 1 开始到 N。寻找树中找两个结点,求最长的异或路径。
异或路径指的是指两个结点之间唯一路径上的所有边权的异或。
思路
首先看到要异或的值最大,我们要想到可以用 Trie 树来贪心弄。
但是它好像不知道怎么弄,那我们先不管它。
那我们看到是一棵树,那我们可以试着统计 \(i\) 到根节点(我这里设是 \(1\))的异或路径的长度是多少。
那我们考虑能不能用这个表示出任意两个点之间的异或路径。
这里先给出结论,其实就是两个点到根节点的异或路径异或起来得出的值。
我们来证明:
分两种情况,分别是一个点在另一个点到根节点的路径上,要么就是两条路径是分开的,不会相交。
- 第一种,那我们可以知道一个点,就是一个值异或它自己就是 \(0\),就会消掉。那你想想,第一种情况时这个图:
那 \(1\) 号点到根节点的异或路径就是 \(a\),\(2\) 号点到根节点的异或路径是 \(a\oplus b\),我们要的是 \(b\)。
那你发现,把它们异或起来,就是 \(a\oplus a\oplus b=b\)。(两个 \(a\) 异或起来抵消掉了) - 第二种,那我们可以画图。
那 \(1\) 号点到根节点的异或路径就是 \(a\),\(2\) 号点到根节点的异或路径是 \(b\),我们要的是 \(a\oplus b\)。
那你发现,把它们异或起来,就是 \(a\oplus b\)。
那你就可以一开始预处理出到根节点的异或路径,然后枚举两个点,然后算这两个点的异或路径,然后取最大值。
但是很明显这样是 \(O(n^2)\) 的,它会超时。
那我们就想一想有什么方法可以快速求最大值的。
想想我们之前一开始想用什么方法?
没错,就是 Trie 树。
我们可以把每个点到根节点的异或路径都放进 Trie 树里面构造。
然后每次枚举你要的异或路径的另一个点,然后跟 Trie 树里面的路径匹配找到最大值。
前面做过一题就是求这个最大值的,主要的就是用了贪心的思想。
从高位向低位枚举,然后如果有跟你这一位不同的就优先选,同时统计这一位异或之后是 \(1\) 对数的贡献。然后如果没有不同的,就看有没有相同的。
(因为毕竟你可以这一位相同,然后尽可能让后面更高的位不同,这样的贡献就更大)
那如果想相同不相同都没有,那就只能以当前的贡献退出了。
(如果想看之前的那一题可以点我查看,不过我只写在了 csdn,博客园里没有,因为比较简单)
然后对这些最大值选一个最大的,就是答案了。
代码
#include<cstdio>
#include<iostream>
using namespace std;
struct node {
int x, to, nxt;
}e[200001];
struct Tree {
int son[2];
}trie[1000001];
int n, x, y, z, le[100001], KK, go, KKK, ans;
void add(int x, int y, int z) {//邻接表
e[++KK] = {z, y, le[x]}; le[x] = KK;
e[++KK] = {z, x, le[y]}; le[y] = KK;
}
void build(int num) {//Trie树建树
int now = 0;
for (int i = 31; i >= 0; i--) {
go = num >> i & 1;
if (!trie[now].son[go]) trie[now].son[go] = ++KKK;
now = trie[now].son[go];
}
}
int find(int num) {
int now = 0, re = 0;
for (int i = 31; i >= 0; i--) {//从高位到低位贪心看
go = num >> i & 1;
if (trie[now].son[go ^ 1]) {//先看能不能有这一位不同
now = trie[now].son[go ^ 1];
re |= 1 << i;
}
else if (trie[now].son[go]) now = trie[now].son[go];//只能相同
else return re;//都没有,就只能退出了
}
return re;
}
void dfs1(int now, int father, int num) {//建出从根节点到 i 点的异或路径构成的 Trie 数
build(num);
for (int i = le[now]; i; i = e[i].nxt)
if (e[i].to != father)
dfs1(e[i].to, now, num ^ e[i].x);
}
void dfs2(int now, int father, int num) {//得出与现在的路径异或能得到的最大值
ans = max(ans, find(num));
for (int i = le[now]; i; i = e[i].nxt)
if (e[i].to != father)
dfs2(e[i].to, now, num ^ e[i].x);
}
int main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d %d %d", &x, &y, &z);
add(x, y, z);
}
dfs1(1, 0, 0);
dfs2(1, 0, 0);
printf("%d", ans);
return 0;
}