KMP算法(研究总结,字符串)

KMP算法(研究总结,字符串)

前段时间学习KMP算法,感觉有些复杂,不过好歹是弄懂啦,简单地记录一下,方便以后自己回忆。

引入

首先我们来看一个例子,现在有两个字符串A和B,问你在A中是否有B,有几个?为了方便叙述,我们先给定两个字符串的值
A="abcaabababaa"
B="abab"

那么普通的匹配是怎么操作的呢?
当然就是一位一位地比啦。(下面用蓝色表示已经匹配,黑色表示匹配失败)
此处输入图片的描述
但是我们发现这样匹配很浪费!
为什么这么说呢,我们看到第4步:
此处输入图片的描述
在第4步的时候,我们发现第3位上c与a不匹配,然后第五步的时候我们把B串向后移一位,再从第一个开始匹配。
此处输入图片的描述
这里就有一个对已知信息很大的浪费,因为根据前面的匹配结果,我们知道B串的前两位是ab,所以不管怎么移,都是不能和b匹配的,所以应该直接跳过对A串第二位的匹配,对于A串的第三位也是同理。

或许这这个例子还不够经典,我们再举一个。

A="abbaabbbabaa"
B="abbaaba"

在这个例子中,我们依然从第1位开始匹配,直到匹配失败:

abbaab
bbabba
abbaaba
我们发现第7位不匹配
那么我们若按照原来的方式继续匹配,则是把B串向后移一位,重新从第一个字符开始匹配
abbaabbbabba
_abbaaba
依然不匹配,那我们就要继续往后移咯。
且住!
既然我们已经匹配了前面的6位,那么我们也就知道了A串这6位和B串的前6位是匹配的,我们能否利用这个信息来优化我们的匹配呢?
也就是说,我们能不能在上面匹配失败后直接跳到:
abbaabbbabba
____abbaaba
这样就可以省去很多不必要的匹配。

KMP算法

KMP算法就是解决上面的问题的,在讲述之前,我们先摆出两个概念:

前缀:指的是字符串的子串中从原串最前面开始的子串,如abcdef的前缀有:a,ab,abc,abcd,abcde
后缀:指的是字符串的子串中在原串结尾处结尾的子串,如abcdef的后缀有:f,ef,def,cdef,bcdef

KMP算法引入了一个F数组(在很多文章中会称为next,但笔者更习惯用F,这更方便表达),F[i]表示的是前i的字符组成的这个子串最长的相同前缀后缀的长度!
怎么理解呢?
例如字符串aababaaba的相同前缀后缀有a和aaba,那么其中最长的就是aaba。

KMP算法的难理解之处与本文叙述的约定

在继续我们的讲述之前,笔者首先讲一下为什么KMP算法不是很好理解。
虽然说网上关于KMP算法的博客、教程很多,但笔者查阅很多资料,详细讲述过程及原理的不多,真正讲得好的文章在定义方面又有细微的不同(当然,真正写得好的文章也有,这里就不一一列举),比如说有些从1开始标号,有些next表示的是前一个而有些是当前的,通读下来,难免会混乱。
那么,为了防止读者在接下来的内容中感到和笔者之前学习时同样的困惑,在这里先对下文做一些说明和约定。

1.本文中,所有的字符串从0开始编号
2.本文中,F数组(即其他文章中的next),F[i]表示0~i的字符串的最长相同前缀后缀的长度。

F数组的运用

那么现在假设我们已经得到了F的所有值,我们如何利用F数组求解呢?
我们还是先给出一个例子(笔者用了好长时间才构造出这一个比较典型的例子啊):
A="abaabaabbabaaabaabbabaab"
B="abaabbabaab"

当然读者可以通过手动模拟得出只有一个地方匹配
abaabaabbabaaabaabbabaab
那么我们根据手动模拟,同样可以计算出各个F的值

B="a b a a b b a b a a b "
F= 0 0 1 1 2 0 1 2 3 4 5(2017.7.25 Update 这里之前有一个错误,感谢@ 歌古道指正)(2017.7.29 Update 好吧,这里原来还有一个错误,已经更正啦感谢@iwangtst)

我们再用i表示当前A串要匹配的位置(即还未匹配),j表示当前B串匹配的位置(同样也是还未匹配),补充一下,若i>0则说明i-1是已经匹配的啦(j同理)。
首先我们还是从0开始匹配:
此处输入图片的描述
此时,我们发现,A的第5位和B的第5位不匹配(注意从0开始编号),此时i=5,j=5,那么我们看F[j-1]的值:

F[5-1]=2;

这说明我们接下来的匹配只要从B串第2位开始(也就是第3个字符)匹配,因为前两位已经是匹配的啦,具体请看图:
此处输入图片的描述
然后再接着匹配:
此处输入图片的描述
我们又发现,A串的第13位和B串的第10位不匹配,此时i=13,j=10,那么我们看F[j-1]的值:

F[10-1]=4

这说明B串的03位是与当前(i-4)(i-1)是匹配的,我们就不需要重新再匹配这部分了,把B串向后移,从B串的第4位开始匹配:
此处输入图片的描述

这时我们发现A串的第13位和B串的第4位依然不匹配
此处输入图片的描述
此时i=13,j=4,那么我们看F[j-1]的值:

F[4-1]=1

这说明B串的第0位是与当前i-1位匹配的,所以我们直接从B串的第1位继续匹配:
此处输入图片的描述
但此时B串的第1位与A串的第13位依然不匹配
此处输入图片的描述
此时,i=13,j=1,所以我们看一看F[j-1]的值:

F[1-1]=0

好吧,这说明已经没有相同的前后缀了,直接把B串向后移一位,直到发现B串的第0位与A串的第i位可以匹配(在这个例子中,i=13)
此处输入图片的描述
再重复上面的匹配过程,我们发现,匹配成功了!
此处输入图片的描述

这就是KMP算法的过程。
另外强调一点,当我们将B串向后移的过程其实就是i++,而当我们不动B,而是匹配的时候,就是i++,j++,这在后面的代码中会出现,这里先做一个说明。

最后来一个完整版的(话说做这些图做了好久啊!!!!):
此处输入图片的描述

F数组的求解

既然已经用这么多篇幅具体阐述了如何利用F数组求解,那么如何计算出F数组呢?总不能暴力求解吧。

KMP的另外一个巧妙的地方也就在这里,它利用我们上面用B匹配A的方法来计算F数组,简单点来说,就是用B串匹配B串自己!
当然,因为B串==B串,所以如果直接按上面的匹配,那是毫无意义的(自己当然可以完全匹配自己啦),所以这里要变一变。

因为上面已经讲过一部分了,先给出计算F的代码:

for (int i=1;i<m;i++)
{
    int j=F[i-1];
    while ((B[j+1]!=B[i])&&(j>=0))
        j=F[j];
    if (B[j+1]==B[i])
        F[i]=j+1;
    else
        F[i]=-1;
}

首先可以确定的几点是:

1.F[0]=-1 (虽说这里应该是0,但为了方便判越界,同时为了方便判断第0位与第i位,程序中这里置为-1)
2.这是一个从前往后的线性推导,所以在计算F[i]时可以保证F[0]~F[i-1]都是已经计算出来的了
3.若以某一位结尾的子串不存在相同的前缀和后缀,这个位的F置为-1(这里置为-1的原因同第一条一样)

重要!:另外,为了在程序中表示方便,在接下来的说明中,F[i]=0表示最长相同前缀后缀长度为1,即真实的最长相同前缀后缀=F[i]+1。(重要的内容要放大)
为什么要这样设置呢,因为这时F[i]代表的就不仅仅与前后缀长度有关了,它还代表着这个前缀的最后一个字符在子串B中的位置。

所以,之前上面列出的F值要变一下(这里用'_'辅助对齐):

B="a _b a a b _b a b a a b "
F= -1 -1 0 0 1 -1 0 1 2 3 4

那么,我们同样可以推出,求解F的思路是:看F[i-1]这个最长相同前缀后缀的后面是否可以接i,若可以,则直接接上,若不可以,下面再说。
举个例子:
还是以B="abaabbabaab"为例,我们看到第2个。

B="a b a a b b a b a a b"
F=-1 -1

此时这个a的前一个b的F值为-1,所以此时a不能接在b的后面(b的相同最长前缀后缀是0啊),此时,j=-1,所以我们判断B[j+1]与B[2],即B[0]与B[2]是否一样。一样,所以F[2]=j+1=0(代表前0~2字符的最长相同前缀后缀的前缀结束处是B[0],长度为0+1=1)。

再来看到第3个:

B="a b a a b b a b a a b"
F=-1 -1 0

开始时,j=F[3-1]=0,我们发现B[j+1=1]!=B[i=3],所以j=F[j]=-1,此时B[j+1=0]==B[i=3],所以F[3]=j+1=0。

最后举个例子,看到第4个

B="a b a a b b a b a a b"
F=-1 -1 0 0

j首先为F[4-1]=0,我们看到B[j+1=1]==B[i],所以F[i]=j+1=1。

后面的就请读者自己慢慢推导了。再强调一遍,我们这样求出来的F值是该最长相同前缀后缀中的前缀的结束字符的数组位置(从0开始编号),如果要求最长相同前缀后缀的长度,要输出F[i]+1。

代码

求解F数组:

for (int i=1;i<m;i++)
{
    int j=F[i-1];
    while ((B[j+1]!=B[i])&&(j>=0))
        j=F[j];
    if (B[j+1]==B[i])
        F[i]=j+1;
    else
        F[i]=-1;
}

利用F数组寻找匹配,这里我们是每找到一个匹配就输出其开始的位置:

while (i<n)
{
    if (A[i]==B[j])
    {
        i++;
        j++;
        if (j==m)
        {
            printf("%d\n",i-m+1);//注意,这里输出的位置是从1开始标号的,如果你要输出从0开始标号的位置,应该是是i-m.这份代码是我做一道题时写的,那道题要求输出的字符串位置从1开始标号.感谢@Draymonder指出了这个疏漏,更多内容请看评论区
            j=F[j-1]+1;
        }
    }
    else
    {
        if (j==0)
            i++;
        else
            j=F[j-1]+1;
    }
}

以下内容 Update at 2019.4.26

贴一个现在自己的写法,不过这里字符串是从 1 开始标号的,如果上面理解了的话不难转化。

Nxt[0]=Nxt[1]=0;
for (int i=2,j=0;i<=m;i++){//构建 Next
    while (j&&T[j+1]!=T[i]) j=Nxt[j];
    if (T[j+1]==T[i]) ++j;Nxt[i]=j;
}
for (int i=1,j=0;i<=n;i++){//匹配
    while (j&&T[j+1]!=S[i]) j=Nxt[j];
    if (T[j+1]==S[i]) ++j;
    if (j==m) Mch[i]=1,j=Nxt[j];//匹配成功
}
posted @ 2017-07-17 15:05  SYCstudio  阅读(25554)  评论(50编辑  收藏  举报