BZOJ4318: OSU!
4318: OSU!
Time Limit: 2 Sec Memory Limit: 128 MBDescription
osu 是一款群众喜闻乐见的休闲软件。
我们可以把osu的规则简化与改编成以下的样子:
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。
Input
第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。
Output
只有一个实数,表示答案。答案四舍五入后保留1位小数。
Sample Input
3
0.5
0.5
0.5
0.5
0.5
0.5
Sample Output
6.0
HINT
【样例说明】
000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0
N<=100000
推的仔细一点就行了,感觉怎么推都可以。
1 #include<iostream> 2 #include<algorithm> 3 #include<cstdio> 4 #include<cstring> 5 #include<cmath> 6 #include<cstdlib> 7 #include<vector> 8 using namespace std; 9 typedef long long ll; 10 typedef long double ld; 11 typedef pair<int,int> pr; 12 const double pi=acos(-1); 13 #define rep(i,a,n) for(int i=a;i<=n;i++) 14 #define per(i,n,a) for(int i=n;i>=a;i--) 15 #define Rep(i,u) for(int i=head[u];i;i=Next[i]) 16 #define clr(a) memset(a,0,sizeof(a)) 17 #define pb push_back 18 #define mp make_pair 19 #define fi first 20 #define sc second 21 #define pq priority_queue 22 #define pqb priority_queue <int, vector<int>, less<int> > 23 #define pqs priority_queue <int, vector<int>, greater<int> > 24 #define vec vector 25 ld eps=1e-9; 26 ll pp=1000000007; 27 ll mo(ll a,ll pp){if(a>=0 && a<pp)return a;a%=pp;if(a<0)a+=pp;return a;} 28 ll powmod(ll a,ll b,ll pp){ll ans=1;for(;b;b>>=1,a=mo(a*a,pp))if(b&1)ans=mo(ans*a,pp);return ans;} 29 void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); } 30 //void add(int x,int y,int z){ v[++e]=y; next[e]=head[x]; head[x]=e; cost[e]=z; } 31 int dx[5]={0,-1,1,0,0},dy[5]={0,0,0,-1,1}; 32 ll read(){ ll ans=0; char last=' ',ch=getchar(); 33 while(ch<'0' || ch>'9')last=ch,ch=getchar(); 34 while(ch>='0' && ch<='9')ans=ans*10+ch-'0',ch=getchar(); 35 if(last=='-')ans=-ans; return ans; 36 } 37 const int N=100005; 38 double f1[N],f2[N],f3[N],dp[N]; 39 int main(){ 40 int n=read(); double p; 41 for (int i=1;i<=n;i++){ 42 scanf("%lf",&p); 43 f1[i]=p*(f1[i-1]+1); 44 f2[i]=p*(f2[i-1]+2*f1[i-1]+1); 45 f3[i]=p*(f3[i-1]+3*f2[i-1]+3*f1[i-1]+1); 46 dp[i]=dp[i-1]+f3[i]-p*f3[i-1]; 47 } 48 printf("%.1lf",dp[n]); 49 }