对线段排序 对于K不存在的线段的放在一起,对x1进行排序 对于x1相同的对于y1排序
对于K存在的直线 对b进行排序 b相同的对于x1进行排序
排序复杂度Nlogn  在对于在一条直线上的线段O(n)的计算线段数目
总时间复杂度NLOGN这应该是这题最基本的算法

#include <stdio.h>
#include 
<string.h>
#include 
<stdlib.h>
#include 
<math.h>

struct line
{
    
double x1, y1, x2, y2;
    
double b, k;
    
bool ex_k;
}
;

line l[
10000];
int result;
int cnt;

void func(int begin, int end)
{
    
int i;
    
int c=0;
    
double back_x, back_y;
    
for(i = begin; i <= end; i++)
    
{
        
if(l[i].ex_k)
        
{
            
if(i == begin || back_x < l[i].x1)
                c
++;
            
if(i == begin || back_x < l[i].x2)
                back_x
=l[i].x2;
        }

        
else
        
{
            
if(i == begin || back_y < l[i].y1)
                c
++;
            
if(i == begin || back_y < l[i].y2)
                back_y
=l[i].y2;
        }

    }

    result 
+= c;
}


bool eq(const double a, const double b)
{
    
if(fabs(a-b)<0.00000001)
        
return 1;
    
else
        
return 0;
}


int cmp1(const void * a, const void * b)
{
    line 
* aa = (line *)a;
    line 
* bb = (line *)b;
    
if(aa->ex_k != bb->ex_k )
        
return aa->ex_k > bb->ex_k ? 1 : -1;
    
else 
        
if(aa->ex_k && bb->ex_k)
        
{
            
if(!eq(aa->k , bb->k))
                
return aa->> bb->? 1 : -1;
            
else
                
if(!eq(aa->b , bb->b))
                    
return aa->> bb->? 1 : -1;
                
else
                    
return aa->x1 > bb->x1 ? 1 : -1;
        }

        
else
            
if(!eq(aa->x1 , bb->x1))
                
return aa->x1 > bb->x1 ? 1 : -1;
            
else
                
return aa->y1 > bb->y1 ? 1 : -1;
}


int main()
{
    
int n;
    
while(scanf("%d"&n) == 1 && n)
    
{
        result 
= 0;
        cnt 
= 0;
        memset(l,
0,sizeof(l));
        
int i;
        line ll;
        
for(i = 0; i < n; i++)
        
{
            scanf(
"%lf%lf%lf%lf"&l[i].x1, &l[i].y1, &l[i].x2, &l[i].y2);
            
if(l[i].x1==l[i].x2)
            
{
                l[i].ex_k
=0;
                
if(l[i].y1 > l[i].y2)
                
{
                    
double temp=l[i].x1;
                    l[i].x1
=l[i].x2;
                    l[i].x2
=temp;
                    temp
=l[i].y1;
                    l[i].y1
=l[i].y2;
                    l[i].y2
=temp;
                }

            }

            
else
            
{
                l[i].ex_k
=1;
                
if(l[i].x1 > l[i].x2)
                
{
                    
double temp=l[i].x1;
                    l[i].x1
=l[i].x2;
                    l[i].x2
=temp;
                    temp
=l[i].y1;
                    l[i].y1
=l[i].y2;
                    l[i].y2
=temp;
                }

                l[i].k
=(l[i].y2-l[i].y1)/(l[i].x2-l[i].x1);
                l[i].b
=l[i].y1-l[i].x1*(l[i].y2-l[i].y1)/(l[i].x2-l[i].x1);            
            }

        }


        qsort(l, n , 
sizeof(l[0]), cmp1);

        
int begin = 0, end = 0;
        
for(i = 0; i < n; i++)
        
{
            
if(i == n-1 || l[i].ex_k != l[i+1].ex_k || !l[i].ex_k&&!eq(l[i].x1 , l[i+1].x1) || !eq(l[i].k , l[i+1].k) || !eq(l[i].b , l[i+1].b) )
            
{
                end 
= i;
                func(begin, end);
                begin 
= i+1;
            }

        }

        printf(
"%d\n", result);

    }

    
return 0;
}