numpy
2018-10-14 23:31 默默的卖萌 阅读(164) 评论(0) 编辑 收藏 举报c = np.array([a,b])#建立二维数组
c
type(c)
type(c[0])
c.dtype
c[1].dtype
结果:
array([[10, 11, 12, 13, 14], [ 0, 1, 2, 3, 4]])
numpy.ndarray
dtype('int32')
1. 安装scipy,numpy,sklearn包
import numpy as np
a = list(range(10,15))
b = np.arange(5)
a
b
a*2
b*2
a+b
b.shape
b.dtype
结果:
[10, 11, 12, 13, 14]
array([0, 1, 2, 3, 4])
[10, 11, 12, 13, 14, 10, 11, 12, 13, 14]
array([0, 2, 4, 6, 8])
array([10, 12, 14, 16, 18])
(5,)
dtype('int32')
2. 从sklearn包自带的数据集中读出鸢尾花数据集data
from sklearn.datasets import load_iris
data = load_iris()
3.查看data类型,包含哪些数据
print(type(data))
print(data.keys())
结果:
4.取出鸢尾花特征和鸢尾花类别数据,查看其形状及数据类型
iris_feature=data['data'],data['feature_names']
print("形状:",iris_feature)
iris_target=data.target
print("类型:",iris_target)
type(iris_feature)
type(iris_target)
结果:
5.取出所有花的花萼长度(cm)的数据
iris_len=np.array(list(len[0] for len in data['data']))
print("花萼长度:",iris_len)
结果:
6.取出所有花的花瓣长度(cm)+花瓣宽度(cm)的数据
iris1_len=np.array(list(len[2] for len in data['data']))
iris1_len.resize((10,15))
print("花瓣长:",iris1_len)
结果:
iris1_wid=np.array(list(len[3] for len in data['data']))
iris1_wid.resize((10,15))
print("花瓣宽:",iris1_wid)
结果:
7.取出某朵花的四个特征及其类别。
print("第三朵花数据:",data['data'][2],data['target'][2])
结果:
第三朵花数据: [4.7 3.2 1.3 0.2] 0
8.将所有花的特征和类别分成三组,每组50个
iris_setosa=[] #定义三个新列表用于存放数据
iris_versicolor=[]
iris_virginica=[]
for i in range(0,150):
if data['target'][i]==0:
data1=data['data'][i].tolist()
data1.append('setosa')
iris_setosa.append(data1)
elif data['target'][i]==1:
data1=data['data'][i].tolist()
data1.append('versicolor')
iris_versicolor.append(data1)
else:
data1=data['data'][i].tolist()
data1.append('virginica')
iris_virginica.append(data1)
9.生成新的数组,每个元素包含四个特征+类别
data2=np.array([iris_setosa,iris_versicolor,iris_virginica])
print(data2)
结果:
[[['5.1' '3.5' '1.4' '0.2' 'setosa'] ['4.9' '3.0' '1.4' '0.2' 'setosa'] ['4.7' '3.2' '1.3' '0.2' 'setosa'] ['4.6' '3.1' '1.5' '0.2' 'setosa'] ['5.0' '3.6' '1.4' '0.2' 'setosa'] ['5.4' '3.9' '1.7' '0.4' 'setosa'] ['4.6' '3.4' '1.4' '0.3' 'setosa'] ['5.0' '3.4' '1.5' '0.2' 'setosa'] ['4.4' '2.9' '1.4' '0.2' 'setosa'] ['4.9' '3.1' '1.5' '0.1' 'setosa'] ['5.4' '3.7' '1.5' '0.2' 'setosa'] ['4.8' '3.4' '1.6' '0.2' 'setosa'] ['4.8' '3.0' '1.4' '0.1' 'setosa'] ['4.3' '3.0' '1.1' '0.1' 'setosa'] ['5.8' '4.0' '1.2' '0.2' 'setosa'] ['5.7' '4.4' '1.5' '0.4' 'setosa'] ['5.4' '3.9' '1.3' '0.4' 'setosa'] ['5.1' '3.5' '1.4' '0.3' 'setosa'] ['5.7' '3.8' '1.7' '0.3' 'setosa'] ['5.1' '3.8' '1.5' '0.3' 'setosa'] ['5.4' '3.4' '1.7' '0.2' 'setosa'] ['5.1' '3.7' '1.5' '0.4' 'setosa'] ['4.6' '3.6' '1.0' '0.2' 'setosa'] ['5.1' '3.3' '1.7' '0.5' 'setosa'] ['4.8' '3.4' '1.9' '0.2' 'setosa'] ['5.0' '3.0' '1.6' '0.2' 'setosa'] ['5.0' '3.4' '1.6' '0.4' 'setosa'] ['5.2' '3.5' '1.5' '0.2' 'setosa'] ['5.2' '3.4' '1.4' '0.2' 'setosa'] ['4.7' '3.2' '1.6' '0.2' 'setosa'] ['4.8' '3.1' '1.6' '0.2' 'setosa'] ['5.4' '3.4' '1.5' '0.4' 'setosa'] ['5.2' '4.1' '1.5' '0.1' 'setosa'] ['5.5' '4.2' '1.4' '0.2' 'setosa'] ['4.9' '3.1' '1.5' '0.1' 'setosa'] ['5.0' '3.2' '1.2' '0.2' 'setosa'] ['5.5' '3.5' '1.3' '0.2' 'setosa'] ['4.9' '3.1' '1.5' '0.1' 'setosa'] ['4.4' '3.0' '1.3' '0.2' 'setosa'] ['5.1' '3.4' '1.5' '0.2' 'setosa'] ['5.0' '3.5' '1.3' '0.3' 'setosa'] ['4.5' '2.3' '1.3' '0.3' 'setosa'] ['4.4' '3.2' '1.3' '0.2' 'setosa'] ['5.0' '3.5' '1.6' '0.6' 'setosa'] ['5.1' '3.8' '1.9' '0.4' 'setosa'] ['4.8' '3.0' '1.4' '0.3' 'setosa'] ['5.1' '3.8' '1.6' '0.2' 'setosa'] ['4.6' '3.2' '1.4' '0.2' 'setosa'] ['5.3' '3.7' '1.5' '0.2' 'setosa'] ['5.0' '3.3' '1.4' '0.2' 'setosa']] [['7.0' '3.2' '4.7' '1.4' 'versicolor'] ['6.4' '3.2' '4.5' '1.5' 'versicolor'] ['6.9' '3.1' '4.9' '1.5' 'versicolor'] ['5.5' '2.3' '4.0' '1.3' 'versicolor'] ['6.5' '2.8' '4.6' '1.5' 'versicolor'] ['5.7' '2.8' '4.5' '1.3' 'versicolor'] ['6.3' '3.3' '4.7' '1.6' 'versicolor'] ['4.9' '2.4' '3.3' '1.0' 'versicolor'] ['6.6' '2.9' '4.6' '1.3' 'versicolor'] ['5.2' '2.7' '3.9' '1.4' 'versicolor'] ['5.0' '2.0' '3.5' '1.0' 'versicolor'] ['5.9' '3.0' '4.2' '1.5' 'versicolor'] ['6.0' '2.2' '4.0' '1.0' 'versicolor'] ['6.1' '2.9' '4.7' '1.4' 'versicolor'] ['5.6' '2.9' '3.6' '1.3' 'versicolor'] ['6.7' '3.1' '4.4' '1.4' 'versicolor'] ['5.6' '3.0' '4.5' '1.5' 'versicolor'] ['5.8' '2.7' '4.1' '1.0' 'versicolor'] ['6.2' '2.2' '4.5' '1.5' 'versicolor'] ['5.6' '2.5' '3.9' '1.1' 'versicolor'] ['5.9' '3.2' '4.8' '1.8' 'versicolor'] ['6.1' '2.8' '4.0' '1.3' 'versicolor'] ['6.3' '2.5' '4.9' '1.5' 'versicolor'] ['6.1' '2.8' '4.7' '1.2' 'versicolor'] ['6.4' '2.9' '4.3' '1.3' 'versicolor'] ['6.6' '3.0' '4.4' '1.4' 'versicolor'] ['6.8' '2.8' '4.8' '1.4' 'versicolor'] ['6.7' '3.0' '5.0' '1.7' 'versicolor'] ['6.0' '2.9' '4.5' '1.5' 'versicolor'] ['5.7' '2.6' '3.5' '1.0' 'versicolor'] ['5.5' '2.4' '3.8' '1.1' 'versicolor'] ['5.5' '2.4' '3.7' '1.0' 'versicolor'] ['5.8' '2.7' '3.9' '1.2' 'versicolor'] ['6.0' '2.7' '5.1' '1.6' 'versicolor'] ['5.4' '3.0' '4.5' '1.5' 'versicolor'] ['6.0' '3.4' '4.5' '1.6' 'versicolor'] ['6.7' '3.1' '4.7' '1.5' 'versicolor'] ['6.3' '2.3' '4.4' '1.3' 'versicolor'] ['5.6' '3.0' '4.1' '1.3' 'versicolor'] ['5.5' '2.5' '4.0' '1.3' 'versicolor'] ['5.5' '2.6' '4.4' '1.2' 'versicolor'] ['6.1' '3.0' '4.6' '1.4' 'versicolor'] ['5.8' '2.6' '4.0' '1.2' 'versicolor'] ['5.0' '2.3' '3.3' '1.0' 'versicolor'] ['5.6' '2.7' '4.2' '1.3' 'versicolor'] ['5.7' '3.0' '4.2' '1.2' 'versicolor'] ['5.7' '2.9' '4.2' '1.3' 'versicolor'] ['6.2' '2.9' '4.3' '1.3' 'versicolor'] ['5.1' '2.5' '3.0' '1.1' 'versicolor'] ['5.7' '2.8' '4.1' '1.3' 'versicolor']] [['6.3' '3.3' '6.0' '2.5' 'virginica'] ['5.8' '2.7' '5.1' '1.9' 'virginica'] ['7.1' '3.0' '5.9' '2.1' 'virginica'] ['6.3' '2.9' '5.6' '1.8' 'virginica'] ['6.5' '3.0' '5.8' '2.2' 'virginica'] ['7.6' '3.0' '6.6' '2.1' 'virginica'] ['4.9' '2.5' '4.5' '1.7' 'virginica'] ['7.3' '2.9' '6.3' '1.8' 'virginica'] ['6.7' '2.5' '5.8' '1.8' 'virginica'] ['7.2' '3.6' '6.1' '2.5' 'virginica'] ['6.5' '3.2' '5.1' '2.0' 'virginica'] ['6.4' '2.7' '5.3' '1.9' 'virginica'] ['6.8' '3.0' '5.5' '2.1' 'virginica'] ['5.7' '2.5' '5.0' '2.0' 'virginica'] ['5.8' '2.8' '5.1' '2.4' 'virginica'] ['6.4' '3.2' '5.3' '2.3' 'virginica'] ['6.5' '3.0' '5.5' '1.8' 'virginica'] ['7.7' '3.8' '6.7' '2.2' 'virginica'] ['7.7' '2.6' '6.9' '2.3' 'virginica'] ['6.0' '2.2' '5.0' '1.5' 'virginica'] ['6.9' '3.2' '5.7' '2.3' 'virginica'] ['5.6' '2.8' '4.9' '2.0' 'virginica'] ['7.7' '2.8' '6.7' '2.0' 'virginica'] ['6.3' '2.7' '4.9' '1.8' 'virginica'] ['6.7' '3.3' '5.7' '2.1' 'virginica'] ['7.2' '3.2' '6.0' '1.8' 'virginica'] ['6.2' '2.8' '4.8' '1.8' 'virginica'] ['6.1' '3.0' '4.9' '1.8' 'virginica'] ['6.4' '2.8' '5.6' '2.1' 'virginica'] ['7.2' '3.0' '5.8' '1.6' 'virginica'] ['7.4' '2.8' '6.1' '1.9' 'virginica'] ['7.9' '3.8' '6.4' '2.0' 'virginica'] ['6.4' '2.8' '5.6' '2.2' 'virginica'] ['6.3' '2.8' '5.1' '1.5' 'virginica'] ['6.1' '2.6' '5.6' '1.4' 'virginica'] ['7.7' '3.0' '6.1' '2.3' 'virginica'] ['6.3' '3.4' '5.6' '2.4' 'virginica'] ['6.4' '3.1' '5.5' '1.8' 'virginica'] ['6.0' '3.0' '4.8' '1.8' 'virginica'] ['6.9' '3.1' '5.4' '2.1' 'virginica'] ['6.7' '3.1' '5.6' '2.4' 'virginica'] ['6.9' '3.1' '5.1' '2.3' 'virginica'] ['5.8' '2.7' '5.1' '1.9' 'virginica'] ['6.8' '3.2' '5.9' '2.3' 'virginica'] ['6.7' '3.3' '5.7' '2.5' 'virginica'] ['6.7' '3.0' '5.2' '2.3' 'virginica'] ['6.3' '2.5' '5.0' '1.9' 'virginica'] ['6.5' '3.0' '5.2' '2.0' 'virginica'] ['6.2' '3.4' '5.4' '2.3' 'virginica'] ['5.9' '3.0' '5.1' '1.8' 'virginica']]]
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步