[ BZOJ 2134 ] 单选错位
\(\\\)
\(Description\)
一共\(N\)道题目,第\(i\)道题有\(A_i\)个选项,现在有一个人做完了所有题目,但将每一道题的答案都写到了下一道题的位置\((\)第\(N\)道写到了第一道的位置\()\),现在这个人的选项和每道题的正确答案对于每一个选项均为随机,求这个人做对的题目数的期望。
- \(N\in [1,10^7]\)
\(\\\)
\(Solution\)
第\(i\)个位置选择了合法的第\(i+1\)个位置的概率,即选了一个范围在\([1,A_{i+1}]\)范围内的数的概率,是\(\frac{min(A_i,A_{i+1})}{A_i}\)。
选对的概率是\(\frac{1}{A_{i+1}}\),所以第\(i\)个位置做对了第\(i+1\)道题的概率是\(\frac{min(A_i,A_{i+1})}{A_i\times A_{i+1}}=\frac{1}{max(A_i,A_{i+1})}\)。
根据期望的线性性,做对题目总数的期望等于做对每一道题的期望之和,而做对一道题的贡献是\(1\),所以是做对每一道题的概率之和,求出来每一道的概率之后直接求和就好。
\(\\\)
\(Code\)
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 10000010
#define R register
#define gc getchar
using namespace std;
typedef long long ll;
inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
int n,A,B,C,a[N];
int main(){
n=rd(); A=rd(); B=rd(); C=rd(); a[1]=rd();
for(R int i=2;i<=n;i++) a[i]=((ll)a[i-1] * A + B) % 100000001;
for(R int i=1;i<=n;i++) a[i] = a[i]%C+1;
double ans=1.0/(double)max(a[1],a[n]);
for(R int i=2;i<=n;++i) ans+=1.0/(double)max(a[i],a[i-1]);
printf("%.3lf\n",ans);
return 0;
}