OpenCV--图像特征(harris角点检测)
图像特征--harris角点检测
基本原理
cv2.cornerHarris()
- img: 数据类型为 float32 的入图像
- blockSize: 角点检测中指定区域的大小
- ksize: Sobel求导中使用的窗口大小
- k: 取值参数为 [0,04,0.06]
import cv2 import numpy as np img = cv2.imread('test_1.jpg') print ('img.shape:',img.shape) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray = np.float32(gray) dst = cv2.cornerHarris(gray, 2, 3, 0.04) print ('dst.shape:',dst.shape)
效果:
img.shape: (800, 1200, 3)
dst.shape: (800, 1200)
img[dst>0.01*dst.max()]=[0,0,255] cv2.imshow('dst',img) cv2.waitKey(0) cv2.destroyAllWindows()
效果:
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Linux系统下SQL Server数据库镜像配置全流程详解
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· Winform-耗时操作导致界面渲染滞后
· Phi小模型开发教程:C#使用本地模型Phi视觉模型分析图像,实现图片分类、搜索等功能
· 语音处理 开源项目 EchoSharp
· drools 规则引擎和 solon-flow 哪个好?solon-flow 简明教程