OpenCV--图像特征(harris角点检测)

图像特征--harris角点检测

 基本原理

cv2.cornerHarris()

- img: 数据类型为 float32 的入图像

- blockSize: 角点检测中指定区域的大小

- ksize: Sobel求导中使用的窗口大小 

- k: 取值参数为 [0,04,0.06]

复制代码
import cv2 
import numpy as np

img = cv2.imread('test_1.jpg')
print ('img.shape:',img.shape)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)
print ('dst.shape:',dst.shape)
复制代码

效果:

img.shape: (800, 1200, 3)
dst.shape: (800, 1200)
img[dst>0.01*dst.max()]=[0,0,255]
cv2.imshow('dst',img) 
cv2.waitKey(0) 
cv2.destroyAllWindows()

效果:

posted @   搞点薯条  阅读(366)  评论(0编辑  收藏  举报
编辑推荐:
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Linux系统下SQL Server数据库镜像配置全流程详解
阅读排行:
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· Winform-耗时操作导致界面渲染滞后
· Phi小模型开发教程:C#使用本地模型Phi视觉模型分析图像,实现图片分类、搜索等功能
· 语音处理 开源项目 EchoSharp
· drools 规则引擎和 solon-flow 哪个好?solon-flow 简明教程
点击右上角即可分享
微信分享提示