OpenCV--文档扫描OCR识别
scan.py:
# 导入工具包 import numpy as np import argparse import cv2 # 设置参数 ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required = True, help = "Path to the image to be scanned") args = vars(ap.parse_args()) def order_points(pts): # 一共4个坐标点 rect = np.zeros((4, 2), dtype = "float32") # 按顺序找到对应坐标0123分别是 左上,右上,右下,左下 # 计算左上,右下 s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # 计算右上和左下 diff = np.diff(pts, axis = 1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def four_point_transform(image, pts): # 获取输入坐标点 rect = order_points(pts) (tl, tr, br, bl) = rect # 计算输入的w和h值 widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # 变换后对应坐标位置 dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype = "float32") # 计算变换矩阵 M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) # 返回变换后结果 return warped def resize(image, width=None, height=None, inter=cv2.INTER_AREA): dim = None (h, w) = image.shape[:2] if width is None and height is None: return image if width is None: r = height / float(h) dim = (int(w * r), height) else: r = width / float(w) dim = (width, int(h * r)) resized = cv2.resize(image, dim, interpolation=inter) return resized # 读取输入 image = cv2.imread(args["image"]) #坐标也会相同变化 ratio = image.shape[0] / 500.0 orig = image.copy() image = resize(orig, height = 500) # 预处理 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) edged = cv2.Canny(gray, 75, 200) # 展示预处理结果 print("STEP 1: 边缘检测") cv2.imshow("Image", image) cv2.imshow("Edged", edged) cv2.waitKey(0) cv2.destroyAllWindows() # 轮廓检测 cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[1] cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5] # 遍历轮廓 for c in cnts: # 计算轮廓近似 peri = cv2.arcLength(c, True) # C表示输入的点集 # epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数 # True表示封闭的 approx = cv2.approxPolyDP(c, 0.02 * peri, True) # 4个点的时候就拿出来 if len(approx) == 4: screenCnt = approx break # 展示结果 print("STEP 2: 获取轮廓") cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2) cv2.imshow("Outline", image) cv2.waitKey(0) cv2.destroyAllWindows() # 透视变换 warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio) # 二值处理 warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY) ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1] cv2.imwrite('scan.jpg', ref) # 展示结果 print("STEP 3: 变换") cv2.imshow("Original", resize(orig, height = 650)) cv2.imshow("Scanned", resize(ref, height = 650)) cv2.waitKey(0)
效果:
利用tesseract工具识别出字符:
# https://digi.bib.uni-mannheim.de/tesseract/ # 配置环境变量如E:\Program Files (x86)\Tesseract-OCR # tesseract -v进行测试 # tesseract XXX.png 得到结果 # pip install pytesseract # anaconda lib site-packges pytesseract pytesseract.py # tesseract_cmd 修改为绝对路径即可 from PIL import Image import pytesseract import cv2 import os preprocess = 'blur' #thresh image = cv2.imread('scan.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if preprocess == "thresh": gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] if preprocess == "blur": gray = cv2.medianBlur(gray, 3) filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, gray) text = pytesseract.image_to_string(Image.open(filename)) print(text) os.remove(filename) cv2.imshow("Image", image) cv2.imshow("Output", gray) cv2.waitKey(0)
效果:
we owe oak wk ome owe ow wo Sk we %o %o %K WHOLE FOODS MARKET - WESTPORT,.CT 06880 399 POST RD WEST - (203) 227-6858 64 365 365 365 BACULN LS BACON LS BACON LS BACON iS BRO TH CHIC FLOUR ALMUNU CHKN BRST BNLSS SK HEAVY CREAM BALSMC REDUCT BEEF GRND JUICE COF CRSHEW 85/15 L. DOCS PINT QORGAK IC HNY ALMOND Bui TR * x ## TAX . 00 BAL NP NP NP NP NP NP NP NP NP NP NP NP NP 4 99 4.99 4.99 1 39 2.19 1.99 . 80 . 39 . 49 tl & on 8.99 14.49 9.99 101.33 m "Ti m n m