poj 1201 Intervals 解题报告
Time Limit: 2000MS | Memory Limit: 65536KB | 64bit IO Format: %lld & %llu |
Description
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Input
Output
Sample Input
5 3 7 3 8 10 3 6 8 1 1 3 1 10 11 1
Sample Output
6
Source
——————————————————我是华丽丽的分割线——————————————————
差分约束系统题目。
约束条件如下:
设S[i]为集合Z中小于等于i的元素个数,即S[i]=|{s|s属于Z,s<=i}|。则:
(1) S[b(i)]-S[a(i-1)]>=c(i) ------------> S[a(i-1)]-S[b(i)]<=-c(i)
(2) S[i]-S[i-1]<=1。
(3) S[i]-S[i-1]>=0,即S[i-1]-S[i]<=0.
设所有区间极右端点为mx,极左端点为mn 则 ans=min(s[mx]-s[mn-1]) 即求源点s[mx]与s[mn-1]之间的最短路 此题得解。
改进后方法如下: (1)先只用条件(1)构图,各顶点到源点的最短距离初始为0。 (2)即刻用Bellman-ford算法求各顶点到源点的最短路径。 p.s.在每次循环中,条件1判完后判断2和3.
2的判断: s[i]<=s[i-1]+1等价于s[i]-s[mx]<=s[i-1]-s[mx]+1 设dist[i]为源点mx到i的最短路径,则s[i]-s[mx]即为dist[i],s[i-1]-s[mx]+1即为dist[i-1]+1。 即若顶点i到源点的最短路径长度大于i-1到源点的最短路径长度+1,则dist[i]=dist[i-1]+1。
3的判断: s[i-1]<=s[i]等价于s[i-1]-s[mx]<=s[i]-s[mx] s[i]-s[mx]即为dist[i],s[i-1]-s[mx]即为dist[i-1]。 即若顶点i-1到源点的最短路径长度大于i到源点的最短路径长度,则dist[i-1]=dist[i]。
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cmath> 5 #include<algorithm> 6 #include<queue> 7 #include<cstdlib> 8 #include<iomanip> 9 #include<cassert> 10 #include<climits> 11 #include<vector> 12 #include<list> 13 #include<map> 14 #define maxn 1000001 15 #define F(i,j,k) for(int i=j;i<=k;i++) 16 #define M(a,b) memset(a,b,sizeof(a)) 17 #define FF(i,j,k) for(int i=j;i>=k;i--) 18 #define inf 0x7fffffff 19 #define maxm 2016 20 #define mod 1000000007 21 //#define LOCAL 22 using namespace std; 23 int read(){ 24 int x=0,f=1;char ch=getchar(); 25 while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} 26 while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} 27 return x*f; 28 } 29 int n,m; 30 int lsh=inf,rsh; 31 struct EDGE 32 { 33 int from; 34 int to; 35 int value; 36 int next; 37 }e[maxn]; 38 int head[maxn]; 39 int tot; 40 inline void addedge(int u,int v,int w) 41 { 42 tot++; 43 e[tot].from=u; 44 e[tot].to=v; 45 e[tot].value=w; 46 e[tot].next=head[u]; 47 head[u]=tot; 48 } 49 int f[maxn]; 50 queue<int> q; 51 bool vis[maxn]; 52 int d[maxn],in[maxn]; 53 bool ford() 54 { 55 int i,t; 56 bool flag=true; 57 while(flag){ 58 flag=false; 59 F(i,1,n){ 60 t=d[e[i].from]+e[i].value; 61 if(d[e[i].to]>t){ 62 d[e[i].to]=t; 63 flag=true; 64 } 65 } 66 F(i,lsh,rsh){ 67 t=d[i-1]+1; 68 if(d[i]>t){ 69 d[i]=t; 70 flag=true; 71 } 72 } 73 FF(i,rsh,lsh){ 74 t=d[i]; 75 if(d[i-1]>t){ 76 d[i-1]=t; 77 flag=true; 78 } 79 } 80 } 81 return true; 82 } 83 int main() 84 { 85 std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y; 86 #ifdef LOCAL 87 freopen("data.in","r",stdin); 88 freopen("data.out","w",stdout); 89 #endif 90 cin>>n;M(head,-1); 91 F(i,1,n){ 92 int a,b,c; 93 cin>>a>>b>>c; 94 addedge(b,a-1,-c); 95 if(lsh>a) lsh=a; 96 if(rsh<b) rsh=b; 97 } 98 ford(); 99 cout<<d[rsh]-d[lsh-1]<<endl; 100 return 0; 101 } 102 /* 103 5 104 3 7 3 105 8 10 3 106 6 8 1 107 1 3 1 108 10 11 1 109 */