poj 1201 Intervals 解题报告

 

 

Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %lld & %llu

 

 Status

 

Description

You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. 
Write a program that: 
reads the number of intervals, their end points and integers c1, ..., cn from the standard input, 
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n, 
writes the answer to the standard output. 

 

Input

The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.

 

Output

The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.

 

Sample Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

 

Sample Output

6

 

Source

 

——————————————————我是华丽丽的分割线——————————————————

差分约束系统题目。

约束条件如下:

设S[i]为集合Z中小于等于i的元素个数,即S[i]=|{s|s属于Z,s<=i}|。则:

(1) S[b(i)]-S[a(i-1)]>=c(i)   ------------> S[a(i-1)]-S[b(i)]<=-c(i)

(2) S[i]-S[i-1]<=1。

(3) S[i]-S[i-1]>=0,即S[i-1]-S[i]<=0.

设所有区间极右端点为mx,极左端点为mn 则 ans=min(s[mx]-s[mn-1]) 即求源点s[mx]与s[mn-1]之间的最短路 此题得解。

 

改进后方法如下: (1)先只用条件(1)构图,各顶点到源点的最短距离初始为0。 (2)即刻用Bellman-ford算法求各顶点到源点的最短路径。 p.s.在每次循环中,条件1判完后判断2和3.

2的判断: s[i]<=s[i-1]+1等价于s[i]-s[mx]<=s[i-1]-s[mx]+1 设dist[i]为源点mx到i的最短路径,则s[i]-s[mx]即为dist[i],s[i-1]-s[mx]+1即为dist[i-1]+1。 即若顶点i到源点的最短路径长度大于i-1到源点的最短路径长度+1,则dist[i]=dist[i-1]+1。

3的判断: s[i-1]<=s[i]等价于s[i-1]-s[mx]<=s[i]-s[mx] s[i]-s[mx]即为dist[i],s[i-1]-s[mx]即为dist[i-1]。 即若顶点i-1到源点的最短路径长度大于i到源点的最短路径长度,则dist[i-1]=dist[i]。

  1 #include<iostream>
  2 #include<cstdio>
  3 #include<cstring>
  4 #include<cmath>
  5 #include<algorithm>
  6 #include<queue>
  7 #include<cstdlib>
  8 #include<iomanip>
  9 #include<cassert>
 10 #include<climits>
 11 #include<vector>
 12 #include<list>
 13 #include<map>
 14 #define maxn 1000001
 15 #define F(i,j,k) for(int i=j;i<=k;i++)
 16 #define M(a,b) memset(a,b,sizeof(a))
 17 #define FF(i,j,k) for(int i=j;i>=k;i--)
 18 #define inf 0x7fffffff
 19 #define maxm 2016
 20 #define mod 1000000007
 21 //#define LOCAL
 22 using namespace std;
 23 int read(){
 24     int x=0,f=1;char ch=getchar();
 25     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
 26     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
 27     return x*f;
 28 }
 29 int n,m;
 30 int lsh=inf,rsh;
 31 struct EDGE
 32 {
 33     int from;
 34     int to;
 35     int value;
 36     int next;
 37 }e[maxn];
 38 int head[maxn];
 39 int tot;
 40 inline void addedge(int u,int v,int w)
 41 {
 42     tot++;
 43     e[tot].from=u;
 44     e[tot].to=v;
 45     e[tot].value=w;
 46     e[tot].next=head[u];
 47     head[u]=tot;
 48 }
 49 int f[maxn];
 50 queue<int> q;
 51 bool vis[maxn];
 52 int d[maxn],in[maxn];
 53 bool ford() 
 54 {
 55      int i,t;
 56      bool flag=true;
 57      while(flag){
 58          flag=false;
 59          F(i,1,n){
 60              t=d[e[i].from]+e[i].value;
 61              if(d[e[i].to]>t){
 62                  d[e[i].to]=t;
 63                  flag=true;
 64              }
 65          }
 66          F(i,lsh,rsh){
 67              t=d[i-1]+1;
 68              if(d[i]>t){
 69                  d[i]=t;
 70                  flag=true;
 71              }
 72          }
 73          FF(i,rsh,lsh){
 74              t=d[i];
 75              if(d[i-1]>t){
 76                  d[i-1]=t;
 77                  flag=true;
 78              }
 79          }
 80      }
 81      return true;
 82 }
 83 int main()
 84 {
 85     std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y;
 86     #ifdef LOCAL
 87     freopen("data.in","r",stdin);
 88     freopen("data.out","w",stdout);
 89     #endif
 90     cin>>n;M(head,-1);
 91     F(i,1,n){
 92         int a,b,c;
 93         cin>>a>>b>>c;
 94         addedge(b,a-1,-c);
 95         if(lsh>a) lsh=a;
 96         if(rsh<b) rsh=b;
 97     }
 98     ford();
 99     cout<<d[rsh]-d[lsh-1]<<endl;
100     return 0;
101 }
102 /*
103 5
104 3 7 3
105 8 10 3
106 6 8 1
107 1 3 1
108 10 11 1
109 */
poj 1201

 

posted @ 2016-09-05 15:00  SBSOI  阅读(213)  评论(0编辑  收藏  举报