TYVJ-P1864 守卫者的挑战 题解
P1864 [Poetize I]守卫者的挑战
时间: 1000ms / 空间: 131072KiB / Java类名: Main
描述
打开了黑魔法师Vani的大门,队员们在迷宫般的路上漫无目的地搜寻着关押applepi的监狱的所在地。突然,眼前一道亮光闪过。“我,Nizem,是黑魔法圣殿的守卫者。如果你能通过我的挑战,那么你可以带走黑魔法圣殿的地图……”瞬间,队员们被传送到了一个擂台上,最初身边有一个容量为K的包包。
擂台赛一共有N项挑战,各项挑战依次进行。第i项挑战有一个属性ai,如果ai>=0,表示这次挑战成功后可以再获得一个容量为ai的包包;如果ai=-1,则表示这次挑战成功后可以得到一个大小为1 的地图残片。地图残片必须装在包包里才能带出擂台,包包没有必要全部装满,但是队员们必须把 【获得的所有的】地图残片都带走(没有得到的不用考虑,只需要完成所有N项挑战后背包容量足够容纳地图残片即可),才能拼出完整的地图。并且他们至少要挑战成功L次才能离开擂台。
队员们一筹莫展之时,善良的守卫者Nizem帮忙预估出了每项挑战成功的概率,其中第i项挑战成功的概率为pi%。现在,请你帮忙预测一下,队员们能够带上他们获得的地图残片离开擂台的概率。
擂台赛一共有N项挑战,各项挑战依次进行。第i项挑战有一个属性ai,如果ai>=0,表示这次挑战成功后可以再获得一个容量为ai的包包;如果ai=-1,则表示这次挑战成功后可以得到一个大小为1 的地图残片。地图残片必须装在包包里才能带出擂台,包包没有必要全部装满,但是队员们必须把 【获得的所有的】地图残片都带走(没有得到的不用考虑,只需要完成所有N项挑战后背包容量足够容纳地图残片即可),才能拼出完整的地图。并且他们至少要挑战成功L次才能离开擂台。
队员们一筹莫展之时,善良的守卫者Nizem帮忙预估出了每项挑战成功的概率,其中第i项挑战成功的概率为pi%。现在,请你帮忙预测一下,队员们能够带上他们获得的地图残片离开擂台的概率。
输入格式
第一行三个整数N,L,K。
第二行N个实数,第i个实数pi表示第i项挑战成功的百分比。
第三行N个整数,第i个整数ai表示第i项挑战的属性值.
第二行N个实数,第i个实数pi表示第i项挑战成功的百分比。
第三行N个整数,第i个整数ai表示第i项挑战的属性值.
输出格式
一个整数,表示所求概率,四舍五入保留6 位小数。
测试样例1
输入
样例输入1
3 1 0
10 20 30
-1 -1 2
样例输入2
5 1 2
36 44 13 83 63
-1 2 -1 2 1
输出
样例输出1
0.300000
样例输出2
0.980387
备注
若第三项挑战成功,如果前两场中某场胜利,队员们就有空间来容纳得到的地图残片,如果挑战失败,根本就没有获得地图残片,不用考虑是否能装下;若第三项挑战失败,如果前两场有胜利,没有包来装地图残片,如果前两场都失败,不满足至少挑战成功次()的要求。因此所求概率就是第三场挑战获胜的概率。
对于 100% 的数据,保证0<=K<=2000,0<=N<=200,-1<=ai<=1000,0<=L<=N,0<=pi<=100。
对于 100% 的数据,保证0<=K<=2000,0<=N<=200,-1<=ai<=1000,0<=L<=N,0<=pi<=100。
——————————————我是分割线————————————————————————————
题目大意:
•擂台赛一共有N项挑战,各项挑战依次进行。最初有一个容量为K的包包。
•第i项挑战有一个属性ai,如果ai>=0,表示这次挑战成功后可以再获得一个容量为ai的包包;如果ai=-1,则表示这次挑战成功后可以得到一个大小为1 的地图残片。
•地图残片必须装在包包里才能带出擂台,包包没有必要全部装满,但是队员们必须把 【获得的所有的】地图残片都带走(没有得到的不考虑,只需完成所有N项挑战后背包容量足够容纳地图残片即可),才能拼出完整的地图。并且他们至少要挑战成功L次才能离开擂台。
•已知第i项挑战成功的概率为pi%。现在,请你帮忙预测一下,队员们能够带上他们获得的地图残片离开擂台的概率。
好题一枚
数学期望DP
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cmath> 5 #include<algorithm> 6 #include<queue> 7 #include<cstdlib> 8 #include<iomanip> 9 #include<cassert> 10 #include<climits> 11 #define maxn 10001 12 #define F(i,j,k) for(int i=j;i<=k;i++) 13 #define M(a,b) memset(a,b,sizeof(a)) 14 #define FF(i,j,k) for(int i=j;i>=k;i--) 15 #define inf 0x7fffffff 16 #define q 23333333333333333 17 using namespace std; 18 int read(){ 19 int x=0,f=1;char ch=getchar(); 20 while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} 21 while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} 22 return x*f; 23 } 24 int a[210],n,m,t,i,j,k; 25 double p[210],f[201][201][401],ans; 26 int main() 27 { 28 std::ios::sync_with_stdio(false); 29 // freopen("data.in","r",stdin); 30 // freopen("data.out","w",stdout); 31 cin>>n>>m>>t; 32 F(i,1,n) cin>>p[i],p[i]/=100; 33 F(i,1,n) cin>>a[i]; 34 if(t>n) t=n; 35 f[0][0][t+200]=1; 36 for(i=0;i<n;i++) 37 for(j=0;j<=n;j++) 38 for(k=-n;k<=n;k++) 39 if(a[i+1]==-1){ 40 f[i+1][j][k+200]+=f[i][j][k+200]*(1-p[i+1]); 41 f[i+1][j+1][k-1+200]+=f[i][j][k+200]*p[i+1]; 42 } 43 else{ 44 f[i+1][j+1][min(k+a[i+1],n)+200]+=f[i][j][k+200]*p[i+1]; 45 f[i+1][j][k+200]+=f[i][j][k+200]*(1-p[i+1]); 46 } 47 for(j=m;j<=n;j++) 48 for(k=0;k<=n;k++) 49 ans+=f[n][j][k+200]; 50 cout<<setiosflags(ios::fixed)<<setprecision(6)<<ans<<endl; 51 return 0; 52 }