李宏毅老师机器学习第一课Linear regression
机器学习就是让机器学会自动的找一个函数
学习图谱:
1.regression
example appliation
estimating the combat power(cp) of a pokemon after evolution.
varibles:Xcp ,Xs ,Xhp ,Xw ,Xh
model:
f(Xcp ,Xs ,Xhp ,Xw ,Xh)=y(cp after evolution)
linear model :
y=b+∑WiXi
Xi an attribute of input x feature Wi weight b bias
Loss function : input a function output how bad it is
L(f)=L(b,w)=∑(ytrue-(b+∑WiXi))2
target : best funcation: f*=argminL(f)
Gradient Descent:
1.randomly pick an initial value w0 b0
2.compute ∂L ⁄∂W|W=W0,b=b0 ∂L ⁄∂b|W=W0,b=b0
3.compute W1=W0-Π( ∂L ⁄∂W|W=W0,b=b0) b1=b0-Π( ∂L ⁄∂b|W=W0,b=b0)
Π is called "learning rate"
linear model not exist local optimal
overfitting : a more complex model does not always lead to better performance on testing dataLoss function Regularization:
L(f)=L(b,w)=∑(ytrue-(b+∑WiXi))2-λ∑(Wi)2
the function with smaller Wi are better
why?
if some noises corrupt input Xi when testing. A smoother function has less influence.