基于最大似然准则的相关接收机
基于最大似然准则的相关接收机
学习《现代通信原理》(曹志刚)时,对其中相关接收机的近似阐述非常不解。借此机会,整理了大量课外资料,对相关接收机的原理有了比较清楚的认识。
1. 接收机的概念
接收机:由信号解调器和检测器组成。
1.1 信号解调器
功能:将接受波形\(r(t)\)变换为N维向量\(\boldsymbol r=[r_1,r_2,...,r_N]\),N为发送信号波形的维数。
目的:求接受波形在各基向量上的投影,即求\(r_i\)。
实现方式:
-
基于匹配滤波器的实现方法(匹配滤波器)。
-
基于信号相关器的实现方法(相关解调器)。
1.2 检测器
根据信号解调器输出的N维向量\(r=[r_1,r_2,...,r_N]\),判断发送波形。
发送信号波形的集合为\(\{S_m(t),m=1,2,...,M\}\),维数为N。
2. 相关解调器的解调过程及其原理
2.1 构造相关解调器
根据发送信号波形集合\(\{S_m(t),m=1,2,...,M\}\),构造正交基\(\{f_n(t),n=1,2,...,n\}\)
要求:每一个\(S_m(t)\)都可以表示为\(\{f_n(t)\}\)的线性加权组合:
其中\(S_{mk}\)是在某个基向量上的幅度(投影)。
注意:尽管接收信号中会叠加信道噪声:
但在构造正交基\(\{f_n(t)\}\)时,我们不考虑噪声空间。因此接收信号会被分解为:
其中\(n'(t)\)是无法用基函数组合的噪声组分。
至于为什么不考虑噪声空间,我们马上揭晓。
2.2 得到接收信号在基向量上的投影
令接收信号\(r(t)\)通过一组并行的N个互相关器:
注意:在后面结合检测器,我们会对改图作改进和简化。因此这不是最终电路图!
各个相关器的输出为:
\(S_{mk}\)就是我们想要的投影,\(n_k\)是噪声的投影,是一个高斯随机变量,由信道引入的加性噪声决定。
而无法被基向量表示的\(n'(t)\)(在线性空间外),积分为0(由于噪声均值为0,因此不相关和正交等价),因此对输出没有任何影响!
这就是为什么我们在构造正交基时,不考虑噪声空间!
2.3 相关器输出的性质
由于\(S_{mk}\)是一个确定的值,而\(n_k\)是一个高斯随机变量,因此:
\(r_k\)也是一个高斯随机变量,其均值为\(S_{mk}\),方差同\(n_k\),为\(\frac{n_0}{2}\)。
因此,相关解调器最终输出的N维向量\(\boldsymbol r=[r_1,r_2,...,r_N]\),其概率满足联合高斯分布:
3. 检测器的实现及其数学原理
尽管相关器已经为我们得到了一个满足联合高斯分布的N维向量,但由于噪声的存在,为了使判错率最小,我们还需要合理地选出最合适的波形,作为最终判断结果。
3.1 MAP准则
全称为最大后验概率Maximum A posteriori Probability,其中A posteriori在拉丁文中是“后验”的意思。
根据推导(参见信息论相关书籍),选择后验概率\(P(\boldsymbol S_m|\boldsymbol r)\)最大对应的发送信号\(S_m(t)\)作为判断结果,则错误率最小。
这一点也很好理解。在接收到\(r(t)\)并转换得到\(\boldsymbol r\)的条件下,发送信号最有可能是\(S_m(t)\),那么我们当然选择它作为输出结果啦~
可惜的是,后验概率很难通过电路获得。
因此,我们无法直接利用MAP准则。
3.2 ML准则
全称为最大似然Maximum Likelihood。
根据贝叶斯公式:
其中:
-
\(P(\boldsymbol S_m)\)是先验概率,一般设为等概。
-
\(P(\boldsymbol r)=P(\boldsymbol r|S_i)P(S_i)\)与发送信号无关。因为无论发的是哪个\(P(\boldsymbol S_m)\),\(P(\boldsymbol r)\)都是既定的,客观存在且无法改变的。具体而言,其中的先验概率\(P(S_i)\)和发送概率\(P(\boldsymbol r|S_i)\)都不随发送信号的变化而改变。
这么看来,我们有重要结论:
-
当\(P(\boldsymbol S_m)\)等概时,最大的\(P(\boldsymbol S_m|\boldsymbol r)\),对应最大的\(P(\boldsymbol r|\boldsymbol S_m)\)!这就是MAP准则到ML准则的转化!
-
当不等概时,最大的\(P(\boldsymbol S_m|\boldsymbol r)\),对应最大的\(P(\boldsymbol r|\boldsymbol S_m)P(\boldsymbol S_m)\),稍微复杂一些,但也很好求。
先剧透一波,ML准则非常容易通过电路实现!我们接着看~
3.3 简化ML准则,实现检测器
现在我们讨论\(P(\boldsymbol S_m)\)等概的情况,即ML准则可以使用。
由第一部分我们知道:解调器输出为:
我们取对数:
显然,第一项是常数,对判断发送信号没有贡献。
第二项是关于\(\sum_{k=1}^N{(r_k-S_{mk})^2}\)单调的函数。
因此,最大后验概率,对应着最小的欧氏距离:
因此,基于ML准则的判决,又称为最小距离检测。
进一步展开、化简得到:
其中:
-
第一项是向量\(\boldsymbol r\)的模值,对判断没有贡献。
-
第二项是接收信号的能量:\(\varepsilon_m\),与发送信号有关,需要考虑。
-
第三项是投影,显然也需要考虑:
\[2\sum_{k=1}^N{r_kS_{mk}}=2\boldsymbol r\bigodot \boldsymbol S_m = 2 \int_0^T {r(t)S_m(t)}dt \]
我们把需要考虑的后两项的相反数合称为相关度量:
综上,我们得到判断的最终准则:
最大相关度量\(C(\boldsymbol r, \boldsymbol S_m)\)对应的发送信号\(S_m(t)\),就是最终判决结果。
因此,我们希望整个相关接收机实现如下流程:
-
将接收信号\(r(t)\)转换为N维向量\(\boldsymbol r\)
-
求出\(\boldsymbol r\)和各个\(\boldsymbol S_m\)的相关度量\(C(\boldsymbol r, \boldsymbol S_m)\)
-
选择最大相关度量对应的发送信号波形\(S_m(t)\)输出
最终电路图(相关接收机)如下:
如果发送波形不等概率,那么MAP准则就不可以直接转换为ML准则啦。此时只需要寻找最大\(P(\boldsymbol r|\boldsymbol S_m)P(\boldsymbol S_m)\)对应的发送波形,化简方式类似,这里就不赘述了。