Pytorch_Part4_损失函数
VisualPytorch beta发布了!
功能概述:通过可视化拖拽网络层方式搭建模型,可选择不同数据集、损失函数、优化器生成可运行pytorch代码
扩展功能:1. 模型搭建支持模块的嵌套;2. 模型市场中能共享及克隆模型;3. 模型推理助你直观的感受神经网络在语义分割、目标探测上的威力;4.添加图像增强、快速入门、参数弹窗等辅助性功能
修复缺陷:1.大幅改进UI界面,提升用户体验;2.修改注销不跳转、图片丢失等已知缺陷;3.实现双服务器访问,缓解访问压力
访问地址:http://sunie.top:9000
发布声明详见:https://www.cnblogs.com/NAG2020/p/13030602.html
一、权值初始化
1. 梯度消失与爆炸
\(E(XY)=E(X)E(Y)\)
\(D(X)=E(X^2)-E(X)^2\)
\(D(X+Y)=D(X)+D(Y)\)
\(\Longrightarrow D(XY) = D(X)D(Y)+D(X)E(Y)^2+D(Y)E(X)^2=D(X)D(Y)\)
\(H_{11}=\sum_{i=0}^n X_i*W_{1i}\)
\(\Longrightarrow D(H_{11})=\sum_{i=0}^n D(X_i)*D(W_{1i})=n*1*1=n\)
\(std(H_{11}=\sqrt n)\)
若仍使 \(D(H_1)=nD(X)D(W)=1\)
\(\Longrightarrow D(W)=\frac{1}{n}\)
import os
import torch
import random
import numpy as np
import torch.nn as nn
from common_tools import set_seed
set_seed(3) # 设置随机种子
class MLP(nn.Module):
def __init__(self, neural_num, layers):
super(MLP, self).__init__()
self.linears = nn.ModuleList([nn.Linear(neural_num, neural_num, bias=False) for i in range(layers)])
self.neural_num = neural_num
def forward(self, x):
for (i, linear) in enumerate(self.linears):
x = linear(x)
# x = torch.relu(x)
print("layer:{}, std:{}".format(i, x.std()))
if torch.isnan(x.std()):
print("output is nan in {} layers".format(i))
break
return x
def initialize(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight.data, std=1)
layer_nums = 100
neural_nums = 256
batch_size = 16
net = MLP(neural_nums, layer_nums)
net.initialize()
inputs = torch.randn((batch_size, neural_nums)) # normal: mean=0, std=1
output = net(inputs)
print(output)
将W设置为0均值,1标准差的标准正太分布,出现如下所示梯度爆炸现象。正如所料,每层std增加的倍数大概为\(\sqrt{256}=16\) ,将W的标准差设为 np.sqrt(1/self.neural_num)
则正常。
layer:0, std:16.0981502532959
layer:1, std:253.29345703125
layer:2, std:3982.99951171875
...
layer:30, std:2.2885405881461517e+37
layer:31, std:nan
output is nan in 31 layers
tensor([[ 4.9907e+37, -inf, inf, ..., inf,
-inf, inf],
[ -inf, inf, 2.1733e+38, ..., 9.1766e+37,
-4.5777e+37, 3.3680e+37],
[ 1.4215e+38, -inf, inf, ..., -inf,
inf, inf],
...,
[-9.2355e+37, -9.9121e+37, -3.7809e+37, ..., 4.6074e+37,
2.2305e+36, 1.2982e+38],
[ -inf, inf, -inf, ..., -inf,
-2.2394e+38, 2.0295e+36],
[ -inf, inf, 2.1518e+38, ..., -inf,
1.6132e+38, -inf]], grad_fn=<MmBackward>)
2. 激活函数初始化
对于不同的激活函数,对W的标准差初始化也不同,保持数据尺度维持在恰当范围,通常方差为1
-
Sigmoid, tanh------Xavier
-
Relu------Kaiming
\(D(W)=\frac{2}{n_i}\)
\(D(W)=\frac{2}{(1+a^2) n_i}\) , LeakyRelu
a = np.sqrt(6 / (self.neural_num + self.neural_num)) tanh_gain = nn.init.calculate_gain('tanh') a *= tanh_gain nn.init.uniform_(m.weight.data, -a, a) # 同 nn.init.xavier_uniform_(m.weight.data, gain=tanh_gain) nn.init.normal_(m.weight.data, std=np.sqrt(2 / self.neural_num)) # 同 nn.init.kaiming_normal_(m.weight.data)
3. 十种初始化方法
-
Xavier均匀分布
-
Xavier正态分布
-
Kaiming均匀分布
-
Kaiming正态分布
-
均匀分布
-
正态分布
-
常数分布
-
正交矩阵初始化
-
单位矩阵初始化
-
稀疏矩阵初始化
nn.init.calculate_gain(nonlinearity, param=None)
x = torch.randn(10000)
out = torch.tanh(x)
gain = x.std() / out.std() # 1.5909514427185059
tanh_gain = nn.init.calculate_gain('tanh') # 1.6666666666666667
# 相当于每经过一层tanh,x的标准差缩小1.6倍
主要功能:计算激活函数的方差变化尺度
主要参数
- nonlinearity: 激活函数名称
- param: 激活函数的参数,如Leaky ReLU的negative_slop
二、损失函数
0. 损失函数、熵
损失函数(Loss Function):衡量模型输出与真实标签的差异
\(Loss=f(\hat y , y)\)
代价函数(Cost Function):
\(Cost = \frac{1}{N}\sum_i^N f(\hat y_i, y)\)
目标函数(Objective Function):
\(Obj=Cost+Regularization\)
1. nn.CrossEntropyLoss
nn.CrossEntropyLoss调用过程:
用步进(Step into)的调试方法从loss_functoin = nn.CrossEntropyLoss() 语句进入函数,观察从nn.CrossEntropyLoss()到class Module(object)一共经历了哪些类,记录其中所有进入的类及函数。
-
CrossEntropyLoss.__init__
:super(CrossEntropyLoss, self).__init__
-
_WeightedLoss.__init__
:super(_WeightedLoss,self).__init__
-
_Loss.__init__
:super(_Loss, self).__init__()
def __init__(self, size_average=None, reduce=None, reduction='mean'): # 前两个不再使用 super(_Loss, self).__init__() if size_average is not None or reduce is not None: self.reduction =_Reduction.legacy_get_string(size_average, reduce) else: self.reduction = reduction
-
Module.__init__
:_construct
功能:nn.LogSoftmax ()与nn.NLLLoss ()结合,进行交叉熵计算
主要参数:
- weight:各类别的loss设置权值
- ignore_index:忽略某个类别
- reduction :计算模式,可为none/sum/mean
- none 逐个元素计算
- sum 所有元素求和,返回标量
- mean 加权平均,返回标量
inputs = torch.tensor([[1, 2], [1, 3], [1, 3]], dtype=torch.float)
target = torch.tensor([0, 1, 1], dtype=torch.long)
# --------- CrossEntropy loss: reduction ------------
# def loss function
loss_f_none = nn.CrossEntropyLoss(weight=None, reduction='none')
loss_f_sum = nn.CrossEntropyLoss(weight=None, reduction='sum')
loss_f_mean = nn.CrossEntropyLoss(weight=None, reduction='mean')
# forward
loss_none = loss_f_none(inputs, target) # tensor([1.3133, 0.1269, 0.1269])
loss_sum = loss_f_sum(inputs, target) # tensor(1.5671)
loss_mean = loss_f_mean(inputs, target) # tensor(0.5224)
'''
若设置:
weights = torch.tensor([1, 2], dtype=torch.float)
结果变为:
tensor([1.3133, 0.2539, 0.2539]) tensor(1.8210) tensor(0.3642)
后面两项因为类别为1,故有权2
'''
2. nn.NLLLoss
功能:实现负对数似然函数中的负号功能
3. nn.BCELoss(逐神经元求Loss)
功能:二分类交叉熵
注意事项:输入值取值在[0,1]
inputs = torch.tensor([[1, 2], [2, 2], [3, 4], [4, 5]], dtype=torch.float)
target = torch.tensor([[1, 0], [1, 0], [0, 1], [0, 1]], dtype=torch.float)
# 注意这里输出端的两个神经元都需要分别计算Loss
target_bce = target
# itarget
inputs = torch.sigmoid(inputs)
weights = torch.tensor([1, 1], dtype=torch.float)
loss_f_none_w = nn.BCELoss(weight=weights, reduction='none')
loss_f_sum = nn.BCELoss(weight=weights, reduction='sum')
loss_f_mean = nn.BCELoss(weight=weights, reduction='mean')
# forward
loss_none_w = loss_f_none_w(inputs, target_bce)
loss_sum = loss_f_sum(inputs, target_bce)
loss_mean = loss_f_mean(inputs, target_bce)
'''
BCE Loss tensor([[0.3133, 2.1269],
[0.1269, 2.1269],
[3.0486, 0.0181],
[4.0181, 0.0067]]) tensor(11.7856) tensor(1.4732)
'''
4. nn.BCEWithLogitsLoss(逐神经元求Loss)
功能:结合Sigmoid与二分类交叉熵
注意事项:网络最后不加sigmoid函数
添加参数:pos_weight 正样本的权值
5. 18种损失函数总结
参数即调用方式详见:
下面仅列出各损失函数功能及表达式
注意:以下公式中出现下标n则表示该函数是对所有神经元进行的逐神经元操作。
函数名 | 功能 | 表达式 |
---|---|---|
CrossEntropyLoss | LogSoftmax 与NLLLoss 结合,进行交叉熵计算 | \(weight[class](-x[class]+log(\sum_j e^{x[j]}))\) |
NLLLoss | 负对数似然函数中的负号功能 | \(-\omega_{y_n} x_{n,y_n}\) |
BCELoss | 二分类交叉熵 | \(-\omega_n [y_nlogx_n+(1-y_n)log(1-x_n)]\) |
BCEWithLogitsLoss | 结合Sigmoid与二分类交叉熵 | \(-\omega_n [y_nlog\sigma(x_n)+(1-y_n)log(1-\sigma(x_n))]\) |
L1Loss | 差的绝对值 | \(|x_n-y_n|\) |
MSELoss | 差的平方 | \((x_n-y_n)^2\) |
SmoothL1Loss | 在L1基础上平滑 | $$ \left{ \begin{array}{lr} 0.5(x_n-y_n)^2 & : |x_n-y_n| < 1\ |x_n-y_n|-0.5 & : otherwise \end{array} \right. $$ |
PoissonNLLLoss | 泊松分布的负对数似然损失函数 | $$ \left{ \begin{array}{lr} e^{x_n}-y_n x_n & : log(input)\ x_n-y_nlog(x_n+eps) & : otherwise \end{array} \right. $$ |
KLDivLoss | 计算KLD(divergence),KL散度,相对熵(x必须是对数) | \(y_n(logy_n-x_n)\) |
MerginRankingLoss | 计算两个向量之间的相似度,用于排序任务 | \(max(0, -y(x^{(1)}-x^{(2)})+margin)\) |
MultiLabelMarginLoss | 多标签边界损失 | \(\sum_j^{len(y)}\sum_{i\neq y_j}^{len(x)}\frac{max(0, 1-(x_{y_j}-x_i))}{len(x)}\) |
SoftMarginLoss | 二分类logistic损失 | \(\frac{1}{len(x)}\sum_i log(1+e^{-y_i x_i})\) |
MultiLabelSoftMarginLoss | 上述多标签版本 | \(-\frac{1}{C}\sum_i (y_i log(1+e^{-x_i^{-1}})+(1-y_i)log\frac{e^{-x}}{1+e^{-x}})\) |
MultiMarginLoss | 计算多分类的折页损失 | \(\frac{1}{len(x)}\sum_i max(0, margin-x_y+x_i)^p\) |
TripletMarginLoss | 计算三元组损失,人脸验证中常用 | \(max(d(a_i, p_i)-d(a_i,n_i)+margin, 0)\) |
HimgeEmbeddingLoss | 计算两个输入的相似性,常用于非线性embedding和半监督学习 | $$ \left{ \begin{array}{lr} x_n & : y_n=1\ max(0, margin-x_n) & : y_n=-1 \end{array} \right. $$ |
CosineEmbeddingLoss | 余弦相似度 | $$ \left{ \begin{array}{lr} 1-cos(x_1,x_2) & : y=1\ max(0,cos(x_1,x_2)-margin) & : y=-1 \end{array} \right. $$ |
CTCLoss | 计算CTC损失,解决时序类数据的分类 | 详见CTC loss 理解 |
三、优化器
pytorch的优化器:管理并更新模型中可学习参数的值,使得模型输出更接近真实标签
导数:函数在指定坐标轴上的变化率
方向导数:指定方向上的变化率
梯度:一个向量,方向为方向导数取得最大值的方向
1. Optimizer基本属性
defaults:优化器超参数
state:参数的缓存,如momentum的缓存
params_groups:管理的参数组,字典的list
_step_count:记录更新次数,学习率调整中使用
# ========================= step 4/5 优化器 ==========================
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9) # 选择优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) # 设置学习率下降策略
# ============================ step 5/5 训练 ========================
for epoch in range(MAX_EPOCH):
...
for i, data in enumerate(train_loader):
...
# backward
optimizer.zero_grad()
loss = criterion(outputs, labels)
loss.backward()
# update weights
optimizer.step()
2. 基本方法
zero_grad():清空所管理参数的梯度,pytorch特性:张量梯度不自动清零,而是累加
step():执行一步更新
add_param_group():添加参数组
state_dict():获取优化器当前状态信息字典
load_state_dict() :加载状态信息字典
weight = torch.randn((2, 2), requires_grad=True)
weight.grad = torch.ones((2, 2))
optimizer = optim.SGD([weight], lr=0.1)
# --------------------------- step -----------------------------------
optimizer.step() # 修改lr=1 0.1观察结果
'''
weight before step:tensor([[0.6614, 0.2669],
[0.0617, 0.6213]])
weight after step:tensor([[ 0.5614, 0.1669],
[-0.0383, 0.5213]])
'''
# ------------------------- zero_grad --------------------------------
print("weight in optimizer:{}\nweight in weight:{}\n".format(id(optimizer.param_groups[0]['params'][0]), id(weight)))
print("weight.grad is {}\n".format(weight.grad))
optimizer.zero_grad()
'''
weight in optimizer:1598931466208
weight in weight:1598931466208 与上一句相同,说明params存储的是指向数据的指针
weight.grad is tensor([[1., 1.],
[1., 1.]])
after optimizer.zero_grad(), weight.grad is
tensor([[0., 0.],
[0., 0.]])
'''
# --------------------- add_param_group --------------------------
print("optimizer.param_groups is\n{}".format(optimizer.param_groups))
w2 = torch.randn((3, 3), requires_grad=True)
optimizer.add_param_group({"params": w2, 'lr': 0.0001})
print("optimizer.param_groups is\n{}".format(optimizer.param_groups))
# ------------------- state_dict ----------------------
optimizer = optim.SGD([weight], lr=0.1, momentum=0.9)
opt_state_dict = optimizer.state_dict()
for i in range(10):
optimizer.step()
torch.save(optimizer.state_dict(), os.path.join(BASE_DIR, "optimizer_state_dict.pkl"))
# -----------------------load state_dict ---------------------------
optimizer = optim.SGD([weight], lr=0.1, momentum=0.9)
state_dict = torch.load(os.path.join(BASE_DIR, "optimizer_state_dict.pkl"))
optimizer.load_state_dict(state_dict)
3. 学习率
梯度下降:
𝒘𝒊+𝟏 = 𝒘𝒊 − 𝒈(𝒘𝒊 )
𝒘𝒊+𝟏 = 𝒘𝒊 − LR * 𝒈(𝒘𝒊)
学习率(learning rate)控制更新的步伐
采用不同学习率进行训练,注意在lr>0.3时出现梯度爆炸
iteration = 100
num_lr = 10
lr_min, lr_max = 0.01, 0.2 # .5 .3 .2
lr_list = np.linspace(lr_min, lr_max, num=num_lr).tolist()
loss_rec = [[] for l in range(len(lr_list))]
iter_rec = list()
for i, lr in enumerate(lr_list):
x = torch.tensor([2.], requires_grad=True)
for iter in range(iteration):
y = func(x)
y.backward()
x.data.sub_(lr * x.grad) # x.data -= x.grad
x.grad.zero_()
loss_rec[i].append(y.item())
for i, loss_r in enumerate(loss_rec):
plt.plot(range(len(loss_r)), loss_r, label="LR: {}".format(lr_list[i]))
plt.legend()
plt.xlabel('Iterations')
plt.ylabel('Loss value')
plt.show()
4. momentum
Momentum(动量,冲量):结合当前梯度与上一次更新信息,用于当前更新
指数加权平均: $$v_t=\beta v_{t-1}+(1-\beta)\theta_t = \sum_i{N}(1-\beta)\betai\theta_{N-1}$$
pytorch中更新公式:
\(v_i=mv_{i-1}+g(w_i)\)
\(w_{i+1}=w_i-lr*v_i\)
1.optim.SGD
主要参数:
• params:管理的参数组
• lr:初始学习率
• momentum:动量系数,贝塔
• weight_decay:L2正则化系数
• nesterov:是否采用NAG
def func(x):
return torch.pow(2*x, 2) # y = (2x)^2 = 4*x^2 dy/dx = 8x
iteration = 100
m = 0.9 # .9 .63
lr_list = [0.01, 0.03]
momentum_list = list()
loss_rec = [[] for l in range(len(lr_list))]
iter_rec = list()
for i, lr in enumerate(lr_list):
x = torch.tensor([2.], requires_grad=True)
momentum = 0. if lr == 0.03 else m
momentum_list.append(momentum)
optimizer = optim.SGD([x], lr=lr, momentum=momentum)
for iter in range(iteration):
y = func(x)
y.backward()
optimizer.step()
optimizer.zero_grad()
loss_rec[i].append(y.item())
上述情况出现弹簧现象,因为在loss接近0的位置仍然有极大的动量,应当适当减小。
其他9个优化器详见PyTorch 学习笔记(七):PyTorch的十个优化器