BestCoder Round #72 (div.2)
后面的题目补不懂了
暴力 1001 Clarke and chemistry
这题也把我搞死了。。枚举系数判断就行了
#include <cstdio> #include <algorithm> #include <cstring> #include <cmath> #include <map> int cnt[3][30]; bool error(void) { for (int i=0; i<2; ++i) { for (int j=0; j<26; ++j) { if (cnt[i][j] != -1 && cnt[2][j] == -1) { return true; } } } return false; } int main(void) { int T; scanf ("%d", &T); while (T--) { int A, B, C; scanf ("%d%d%d", &A, &B, &C); memset (cnt, -1, sizeof (cnt)); char c[2]; int t; for (int i=0; i<A; ++i) { scanf ("%s %d", &c, &t); cnt[0][c[0]-'A'] = t; } for (int i=0; i<B; ++i) { scanf ("%s %d", &c, &t); cnt[1][c[0]-'A'] = t; } for (int i=0; i<C; ++i) { scanf ("%s %d", &c, &t); cnt[2][c[0]-'A'] = t; } bool flag = true; int ans1 = 1000000, ans2 = 1000000; for (int i=1; i<=2000&&flag; ++i) { for (int j=1; j<=2000&&flag; ++j) { bool ok = true; for (int k=0; k<26; ++k) { if (cnt[2][k] == -1) continue; if (cnt[0][k] == -1 && cnt[1][k] == -1) { flag = false; break; } int x = 0; if (cnt[0][k] != -1) x = cnt[0][k] * i; if (cnt[1][k] != -1) x += cnt[1][k] * j; if (x != cnt[2][k]) { ok = false; break; } } if (ok) { if (i < ans1 || (i == ans1 && j < ans2)) ans1 = i, ans2 = j; } } } if (error ()) flag = false; if (flag && ans1 < 1000000) printf ("%d %d\n", ans1, ans2); else puts ("NO"); } return 0; }
数学 1002 Clarke and points
题意: 求|XA - XB| + |YA - YB| 最大
分析:去掉绝对值,就知道只要得到最大最小的(XA + XB) 和 (XA - XB)
#include <cstdio> #include <cstring> #include <algorithm> #include <ctime> #include <cstdlib> #include <cmath> #include <iostream> using namespace std; long long seed; inline long long rand(long long l, long long r) { static long long mo=1e9+7, g=78125; return l+((seed*=g)%=mo)%(r-l+1); } const int N = 1e6 + 5; pair<long long, long long> p[N]; long long mx[2], mn[2]; int main(void) { int T; cin >> T; while (T--) { int n; cin >> n >> seed; mx[0] = mx[1] = -(1ll << 60); mn[0] = mn[1] = (1ll << 60); for (int i = 0; i < n; i++) { p[i].first = rand (-1000000000, 1000000000); p[i].second = rand (-1000000000, 1000000000); mx[0] = max (mx[0], p[i].first + p[i].second); mx[1] = max (mx[1], p[i].first - p[i].second); mn[0] = min (mn[0], p[i].first + p[i].second); mn[1] = min (mn[1], p[i].first - p[i].second); } cout << max (abs (mx[0] - mn[0]), abs (mx[1] - mn[1])) << '\n'; } return 0; }
贪心 + BFS Clarke and MST
题意:求位运算and的最大生成树
分析:枚举数字每一位是否有可能为1,即(now & w == now),用BFS遍历所有生成树
#include <cstdio> #include <cstring> #include <queue> const int N = 3e5 + 5; struct Edge { int v, w; }; std::vector<Edge> G[N]; int n, m; bool vis[N]; bool BFS(int now) { std::queue<int> que; memset (vis, false, sizeof (vis)); que.push (1); vis[1] = true; while (!que.empty ()) { int u = que.front (); que.pop (); for (int i=0; i<G[u].size (); ++i) { int v = G[u][i].v; int w = G[u][i].w; if (!vis[v] && (w & now) == now) { vis[v] = true; que.push (v); } } } for (int i=1; i<=n; ++i) if (!vis[i]) return false; return true; } int main(void) { int T; scanf ("%d", &T); while (T--) { scanf ("%d%d", &n, &m); for (int i=0; i<=n; ++i) G[i].clear (); for (int u, v, w, i=0; i<m; ++i) { scanf ("%d%d%d", &u, &v, &w); G[u].push_back ((Edge) {v, w}); G[v].push_back ((Edge) {v, w}); } int ans = 0; for (int i=30; i>=0; --i) { int now = ((1 << i) | ans); if (BFS (now)) ans = now; } printf ("%d\n", ans); } return 0; }
编译人生,运行世界!