免费馅饼——移动dp
免费馅饼
题目描述
SERKOI最新推出了一种叫做“免费馅饼”的游戏:
游戏在一个舞台上进行。舞台的宽度为 \(W\) 格,天幕的高度为 \(H\) 格,游戏者占一格。
开始时游戏者站在舞台的正中央,手里拿着一个托盘。下图为天幕的高度为 \(4\) 格时某一个时刻游戏者接馅饼的情景。
游戏开始后,从舞台天幕顶端的格子中不断出现馅饼并垂直下落。游戏者左右移动去接馅饼。游戏者每秒可以向左或向右移动一格或两格,也可以站在原地不动。
馅饼有很多种,游戏者事先根据自己的口味,对各种馅饼依次打了分。同时,在 \(3-308\) 电脑的遥控下,各种馅饼下落的速度也是不一样的,下落速度以格/秒为单位。
当馅饼在某一秒末恰好到达游戏者所在的格子中,游戏者就收集到了这块馅饼。
写一个程序,帮助我们的游戏者收集馅饼,使得所收集馅饼的分数之和最大。
输入格式
输入文件的第一行是用空格隔开的两个正整数,分别给出了舞台的宽度 \(W\) ( \(1\) 到 \(99\) 之间的奇数)和高度 \(H\) ( \(1\) 到 \(100\) 之间的整数)。
接下来依馅饼的初始下落时间顺序给出了所有馅饼的信息。每一行给出了一块馅饼的信息。由四个正整数组成,分别表示了馅饼的初始下落时刻( \(0\) 到 \(1000\) 秒),水平位置、下落速度( \(1\) 到 \(100\) )以及分值。游戏开始时刻为 \(0\) 。从 \(1\) 开始自左向右依次对水平方向的每格编号。
输入文件中同一行相邻两项之间用一个或多个空格隔开。
输出格式
输出文件的第一行给出了一个正整数,表示你的程序所收集的最大分数之和。
样例
样例输入
3 3
0 1 2 5
0 2 1 3
1 2 1 3
1 3 1 4
样例输出
12
数据范围与提示
馅饼个数
思路
移动 \(dp\) ,重在移动,但是两个物体都移动处理起来还是很麻烦的,所以定馅饼不动,让人动,去接馅饼。
但是要注意的是馅饼在第 \(i\) 秒到第 \(i+1\) 秒的降落过程中,不可被接到,相当于闪现,在过程中不可选中。
所以只有在高度能够被速度整除的时候,才可以被接到,所以有的馅饼可以除去,不考虑。
设 \(f[i][j]\) 为在第 \(i\) 时刻,小人在第 \(j\) 的坐标,能够接到的最大值。
用 \(k\) 枚举小人移动的距离 \((-2、-1、0、1、2)\) ,动态转移方程:
\(f[i][j]=min(f[i][j],f[i-1][j+k]+a[i][j])\)
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn=2500+50;
int w,h;
int dp[maxn][maxn];
int maxtime;
int dx[5]={0,1,-1,2,-2};
struct Node{
int t0;
int t1;
int a0;
int v;
int w;
}e[maxn];
int Cala(int t,int now){
int ans=0;
for(int i=0;i<=5;i++){
if(now+dx[i]<0||now+dx[i]>w)continue;//如果走出了横坐标的范围,直接跳过
ans=max(ans,dp[t+1][now+dx[i]]);
}
return ans;
}
int main(){
scanf("%d%d",&w,&h);
h--;
int tot=1;
while(~scanf("%d%d%d%d",&e[tot].t0,&e[tot].a0,&e[tot].v,&e[tot].w)){
if(h%e[tot].v==0){//只有在高度能够被速度整除的时候,才可以被接到
e[tot].t1=e[tot].t0+h/e[tot].v;
maxtime=max(maxtime,e[tot].t1);
tot++;
}
}
if(tot==1){//若没有馅饼可接,直接输出0
printf("0\n");
return 0;
}
if(w==1){//若宽度只有1,直接将全部求和
int sum=0;
for(int i=1;i<=tot;i++){
if(e[i].a0==1){
sum+=e[i].w;
}
}
printf("%d\n",sum);
return 0;
}
for(int i=1;i<=tot;i++){//初始化
dp[e[i].t1][e[i].a0]+=e[i].w;
}
for(int i=maxtime-1;i>=0;i--){
for(int j=w;j>=1;j--){
dp[i][j]+=Cala(i,j);
}
}
printf("%d\n",dp[0][w/2+1]);
return 0;
}