摘要: 使用注意力机制的seq2seq attention机制是在RNN中经常被使用到的一个机制。 对于attention这样一个机制,为什么会出现呢?主要就是我们采用传统的encoder-decoder来搭建RNN模型的时候,通常会存在一些问题。 问题一:无论输入的序列有多长,都会被编码成一个固定的向量表 阅读全文
posted @ 2021-10-08 10:44 RowryCho 阅读(308) 评论(0) 推荐(0) 编辑
摘要: 想做深度学习研究的从这讲开始看就行了说实话... 注意力机制 随意:跟随意志 注意力机制是没有心理学背景的,但是可以从心理学的角度进行解释。 卷积、全连接、池化层都只考虑不随意线索 就像是池化也只是把其中最大那一块提取出来,其实也不知道要干什么,就看过去。 注意力机制则显示的对随意线索进行建模(主动 阅读全文
posted @ 2021-10-08 10:06 RowryCho 阅读(174) 评论(0) 推荐(0) 编辑
摘要: 注意力分数 刚刚的注意力权重,如何设计使得和我们现在的东西比较相像?里面一个东西叫做注意力分数。 可以看看之前的使用过了高斯核的注意力。 上图有一堆key-value pair(训练时候的x和y),输入一个query(推理时候的x),然后query和每一个key做一个计算,得到一个注意力分数a,然后 阅读全文
posted @ 2021-10-08 10:04 RowryCho 阅读(408) 评论(0) 推荐(0) 编辑