遗传算法
前言:
放假前偷偷跑到杭州玩了几天,虽然没有预料中那么美丽,不过还是很开心,感谢老严的热情款待。回到南京后,距离完成任务就剩3天时间,而且师兄逼的很紧,于是夜以继日,实现了对比算法《Multimodal Sparse Representation-Based Classification for Lung Needle Biopsy Images》(Google学术搜索)。
遗传算法虽然如雷贯耳,但是一直未有接触,此次从零开始,看算法、看论文,对了,还要招待从云南回来的基友。时间虽然很紧,但是最后还是圆满完成任务,得以回家过年,感觉很充实。
网上有很多GA的参考文章,我就不画蛇添足了,但大多数文章只是给出的很简单函数的例子,浅尝辄止,目标函数太过简单,感觉很不过瘾。于是乎我将我实现的本篇文章的matlab代码记录于此,写的很乱,轻喷。
文章的大意是通过肺细胞的形状、颜色和纹理,利用SRC学习构造3个子字典(代码中是4个模态),然后分别对测试样本做预测,最后通过mSRC进行分类。
主函数:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright (c) 2014 七年之后. All rights reserved. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Name: main.m %省略数据集预处理 for loop = 1:20 %循环20次,得到20个结果取平均值 n=train_num*class_num; %beta字符串长度,即训练样本个数 beta1=round(rand(K,n)); %随机01字符串,K为种群大小 beta2=round(rand(K,n)); beta3=round(rand(K,n)); beta4=round(rand(K,n)); %产生初始群体 Dict=tr_dat(:,:,:); for g=1:G %G为迭代次数 g kappa=[0.001]; lambda=0.1; %更新beta newbeta1=beta1; newbeta2=beta2; newbeta3=beta3; newbeta4=beta4; newtrls1=[]; newtrls2=[]; newtrls3=[]; newtrls4=[]; %%%%% 更新子字典 %%%%%% Dict1=[]; Dict2=[]; Dict3=[]; Dict4=[]; fit=[]; %适应值 for i=1:K %K个种群 %Dict为样本集,分别构造4个模态下的子字典 for j=1:n %n个样本 if(newbeta1(i,j)==1) Dict1=[Dict1,Dict(:,j,1)]; newtrls1=[newtrls1,trls(j)]; %训练样本标记 end if(newbeta2(i,j)==1) Dict2=[Dict2,Dict(:,j,2)]; newtrls2=[newtrls2,trls(j)]; end if(newbeta3(i,j)==1) Dict3=[Dict3,Dict(:,j,3)]; newtrls3=[newtrls3,trls(j)]; end if(newbeta4(i,j)==1) Dict4=[Dict4,Dict(:,j,4)]; newtrls4=[newtrls4,trls(j)]; end end %%%%%% 稀疏编码,计算fitness %%%%% count1=0; count2=0; for j=1:n %n训练样本个数 %稀疏编码分类,此处省略,id分别为预测值 if(id1==trls(j)||id2==trls(j)||id3==trls(j)||id4==trls(j)) count1=count1+1; end if(id1==id2||id1==id3||id1==id4||id2==id3||id2==id4||id3==id4) count2=count2+1; end end fitvalue=1/n*count1+1/n*lambda*(4-count2); fit=[fit,fitvalue]; end if(g~=G) %最后一次跳出循环 newbeta1=[]; newbeta2=[]; newbeta3=[]; newbeta4=[]; %newbeta增加一列,然后按照fitness排序 newbeta1=[beta1(:,:),fit']; newbeta2=[beta2(:,:),fit']; newbeta3=[beta3(:,:),fit']; newbeta4=[beta4(:,:),fit']; newbeta1=sortrows(newbeta1,n+1); newbeta2=sortrows(newbeta2,n+1); newbeta3=sortrows(newbeta3,n+1); newbeta4=sortrows(newbeta4,n+1); %去掉fitness newbeta1(:,n+1)=[]; newbeta2(:,n+1)=[]; newbeta3(:,n+1)=[]; newbeta4(:,n+1)=[]; %去掉fitness小的种群 newbeta1(K/2+1:K,:)=[]; newbeta2(K/2+1:K,:)=[]; newbeta3(K/2+1:K,:)=[]; newbeta4(K/2+1:K,:)=[]; %交叉变异 [newbeta1]=crossover(newbeta1,pc);%交叉 [newbeta1]=mutation(newbeta1,pm);%变异 [newbeta2]=crossover(newbeta2,pc);%交叉 [newbeta2]=mutation(newbeta2,pm);%变异 [newbeta3]=crossover(newbeta3,pc);%交叉 [newbeta3]=mutation(newbeta3,pm);%变异 [newbeta4]=crossover(newbeta4,pc);%交叉 [newbeta4]=mutation(newbeta4,pm);%变异 %随机增加K/2个染色体 add_beta1=round(rand(K/2,n)); add_beta2=round(rand(K/2,n)); add_beta3=round(rand(K/2,n)); add_beta4=round(rand(K/2,n)); newbeta1=[newbeta1;add_beta1]; newbeta2=[newbeta2;add_beta2]; newbeta3=[newbeta3;add_beta3]; newbeta4=[newbeta4;add_beta4]; end end %选一个最大的beta构造最终子字典 maxindex=find(fit==max(fit)); %最大fitness下标 lastbeta1=newbeta1(maxindex,:); lastbeta2=newbeta2(maxindex,:); lastbeta3=newbeta3(maxindex,:); lastbeta4=newbeta4(maxindex,:); %%%%%% 最终子字典 %%%%%% Dict1=[]; Dict2=[]; Dict3=[]; Dict4=[]; %样本标记 Drls1=[]; Drls2=[]; Drls3=[]; Drls4=[]; for j=1:n %样本 if(lastbeta1(j)==1) Dict1=[Dict1,Dict(:,j,1)]; Drls1=[Drls1,floor(j/train_num)+1]; end if(lastbeta2(j)==1) Dict2=[Dict2,Dict(:,j,2)]; Drls2=[Drls2,floor(j/train_num)+1]; end if(lastbeta3(j)==1) Dict3=[Dict3,Dict(:,j,3)]; Drls3=[Drls3,floor(j/train_num)+1]; end if(lastbeta4(j)==1) Dict4=[Dict4,Dict(:,j,4)]; Drls4=[Drls4,floor(j/train_num)+1]; end end count=0; %统计分类正确个数 % mSRC分类,此处省略 right_num=[right_num,count/length(ttls)] end
交叉函数:
%Name: crossover.m %交叉 function [newpop]=crossover(pop,pc) %pc是交叉概率 [rows,cols]=size(pop); newpop=pop(:,:); for i=1:2:rows-1 if(rand<pc) cpoint=round(rand*cols); newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:cols)]; newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:cols)]; end end
变异函数:
%Name: mutation.m %变异 function [newpop]=mutation(pop,pm) %pm是变异概率 [rows,cols]=size(pop); newpop=pop(:,:); for i=1:rows if(rand<pm) mpoint=round(rand*cols); if mpoint<=0 mpoint=1; end newpop(i)=pop(i); if any(newpop(i,mpoint))==0 newpop(i,mpoint)=1; else newpop(i,mpoint)=0; end end end