POJ 3259 Wormholes【最短路/SPFA判断负环模板】

农夫约翰在探索他的许多农场,发现了一些惊人的虫洞。虫洞是很奇特的,因为它是一个单向通道,可让你进入虫洞的前达到目的地!他的N(1≤N≤500)个农场被编号为1..N,之间有M(1≤M≤2500)条路径,W(1≤W≤200)个虫洞。FJ作为一个狂热的时间旅行的爱好者,他要做到以下几点:开始在一个区域,通过一些路径和虫洞旅行,他要回到最开时出发的那个区域出发前的时间。也许他就能遇到自己了:)。为了帮助FJ找出这是否是可以或不可以,他会为你提供F个农场的完整的映射到(1≤F≤5)。所有的路径所花时间都不大于10000秒,所有的虫洞都不大于万秒的时间回溯。Input第1行:一个整数F表示接下来会有F个农场说明。 每个农场第一行:分别是三个空格隔开的整数:N,M和W 第2行到M+1行:三个空格分开的数字(S,E,T)描述,分别为:需要T秒走过S和E之间的双向路径。两个区域可能由一个以上的路径来连接。 第M +2到M+ W+1行:三个空格分开的数字(S,E,T)描述虫洞,描述单向路径,S到E且回溯T秒。OutputF行,每行代表一个农场 每个农场单独的一行,” YES”表示能满足要求,”NO”表示不能满足要求。Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

 

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define mp make_pair
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<=(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e5+20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int tot,n,m,x,s;
int u,v,w;
int dis[maxn];
int cnt[maxn],vis[maxn];
struct cmp
{
    bool operator()(int a,int b)
    {
        return dis[a] > dis[b];
    }
};

int head[maxn];
struct node
{
    int v,w,nxt;
}e[maxn];
void init()
{
    tot=0;
    ms(cnt,0);
    ms(head,-1);
    ms(dis,INF);//求最长路径开始设为0
    ms(vis,0);
}
void add(int u,int v,int w)
{
    e[tot].v=v;
    e[tot].w=w;
    e[tot].nxt=head[u];
    head[u]=tot++;
}

int spfa(int s)
{
    queue<int> q;
    vis[s]=1;
    dis[s]=0;
    cnt[s]++;
    q.push(s);
    while(!q.empty())
    {
        int u = q.front(); q.pop();
        vis[u]=0; //
        for(int i=head[u];i!=-1;i=e[i].nxt)
        {
            int v = e[i].v;
            if(dis[v] > dis[u] + e[i].w)
            {
                dis[v] = dis[u] + e[i].w;
                if(!vis[v])
                {
                    vis[v]=1;
                    q.push(v);
                    if(++cnt[v]>n) return 1;//有负环
                }
            }
        }
    }
    return 0;
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d%d",&n,&m,&w);
        init();
        int a,b,c;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            add(a,b,c);add(b,a,c);
        }
        for(int i=1;i<=w;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            add(a,b,-c);
        }
        if(spfa(1)) puts("YES");
        else puts("NO");
    }
}
/*
【题意】

【类型】
SPFA判断负环

【分析】
spfa算法

我们都知道spfa算法是对bellman算法的优化,那么如何用spfa算法来判断负权回路呢?我们考虑一个节点入队的条件是什么,只有那些在前一遍松弛中改变了距离估计值的点,才可能引起他们的邻接点的距离估计值的改变。因此,用一个先进先出的队列来存放被成功松弛的顶点。同样,我们有这样的定理:“两点间如果有最短路,那么每个结点最多经过一次。也就是说,这条路不超过n-1条边。”(如果一个结点经过了两次,那么我们走了一个圈。如果这个圈的权为正,显然不划算;如果是负圈,那么最短路不存在;如果是零圈,去掉不影响最优值)。也就是说,每个点最多入队n-1次(这里比较难理解,需要仔细体会,n-1只是一种最坏情况,实际中,这样会很大程度上影响程序的效率)。

有了上面的基础,思路就很显然了,加开一个数组记录每个点入队的次数(num),然后,判断当前入队的点的入队次数,如果大于n-1,则说明存在负权回路。

【时间复杂度&&优化】

【trick】

【数据】
*/
View Code

 

posted @ 2018-08-09 00:17  Roni_i  阅读(174)  评论(0编辑  收藏  举报