洛谷 P1352 没有上司的舞会【树形DP/邻接链表+链式前向星】
题目描述
某大学有N个职员,编号为1~N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。
输入输出格式
输入格式:
第一行一个整数N。(1<=N<=6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。
最后一行输入0 0
输出格式:
输出最大的快乐指数。
【分析】:
那么考虑树形DP的状态设计,一般与子树有关,即求出子树的答案然后合并上去
考虑在合并的时候,会影响答案合并的状态,就是子树的根节点选或者不选了,选了的话当前节点就不能选,两者的答案不一样当然要分开统计
于是得出状态设计 : f(i,0/1)
表示第i个子树内,i这个点选或者不选的最大值
f(i,0) = sigma max(f(v,0),f(v,1)) + ai,这是由于只要根不选,子树选不选都可以的缘故
f(i,1) = sigma f(v,0) ,这是由于根选了,所有子树的根都不能选的缘故
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<=(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e5 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int mod = 10056;
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
int h[maxn];
int v[maxn];
int n;
vector<int> son[maxn];
int f[maxn][2];
void dfs(int x)
{
f[x][0]=0;
f[x][1]=h[x];
for(int i=0;i<son[x].size();i++)
{
int y=son[x][i];
dfs(y);
f[x][0]+=max(f[y][0],f[y][1]);
f[x][1]+=f[y][0];
}
}
int main()
{
cin>>n;
rep(i,1,n) cin>>h[i];
rep(i,1,n-1)
{
int x,y;
cin>>x>>y;
son[y].push_back(x);
v[x]=1;
}
int root;
rep(i,1,n)
{
if(!v[i])
{
root=i;
break;
}
}
dfs(root);
cout<<max(f[root][0],f[root][1])<<endl;
}
HDU 1520 【链式前向星版本】
链接
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<=(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 100010 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int mod = 10056;
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
int h[maxn];
int v[maxn];
int n;
int f[maxn][2];
int head[maxn];
struct node
{
int to,nxt;
}e[maxn*2];
int tot=0;
void add(int u,int v)
{
tot++;
e[tot].to=v;
e[tot].nxt=head[u];
head[u]= tot;
}
void init()
{
tot=0;
ms(head,-1);
ms(f,0);
ms(v,0);
}
void dfs(int u,int fa)
{
//f[u][0]=0;
f[u][1]=h[u];
for(int i=head[u]; i!=-1; i=e[i].nxt)
{
int v=e[i].to;
if(v==fa) continue;
dfs(v,u);
f[u][0] += max(f[v][0],f[v][1]);
f[u][1] += f[v][0];
}
}
int main()
{
while(cin>>n)
{
init();
rep(i,1,n) cin>>h[i];
rep(i,1,n-1)
{
int x,y;
cin>>x>>y;
add(x,y), add(y,x);
v[x]++;
}
scanf("\n0 0");
int root;
rep(i,1,n)
if(!v[i])
{
root=i;
break;
}
dfs(root,root);
cout<<max(f[root][0],f[root][1])<<endl;
}
}
/*
Sample Input
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
5
*/