如何求先序排列和后序排列——hihocoder1049+洛谷1030+HDU1710+POJ2255+UVA548【二叉树递归搜索】
【已知先序、中序求后序排列】——字符串类型
#1049 : 后序遍历
时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述
小Ho在这一周遇到的问题便是:给出一棵二叉树的前序和中序遍历的结果,还原这棵二叉树并输出其后序遍历的结果。
提示:分而治之——化大为小,化小为无
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第一行为一个由大写英文字母组成的字符串,表示该二叉树的前序遍历的结果。
每组测试数据的第二行为一个由大写英文字母组成的字符串,表示该二叉树的中序遍历的结果。
对于100%的数据,满足二叉树的节点数小于等于26。
输出
对于每组测试数据,输出一个由大写英文字母组成的字符串,表示还原出的二叉树的后序遍历的结果。
样例输入
AB
BA
样例输出
BA
【分析】:在注释里面。
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e3 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
string a,b;
string dfs(int l1,int l2,int len)//l1前序起点、l2中序起点、len是树的总长
{
int i;
if(len<=0) return "";
for(i=l2;i<l2+len;i++)
{
if(b[i]==a[l1])
break;//用i记录当前根节点
}
int cnt=i-l2;//左子树遍历的长度
string a1 = dfs(l1+1,l2,cnt);//递归左子树,左子树先序遍历起始点为l1+1,左子树中序遍历起始点始终为l2
string a2 = dfs(l1+cnt+1,i+1,len-cnt-1);//递归右子树,右子树先序遍历起始点在左子树右侧为l1+cnt+1,右子树中序遍历始终在根节点i右侧为i+1
return a1+a2+a[l1];//由于是后序遍历 层数最低的根节点放置末尾
}
int main()
{
while(cin>>a>>b)
{
cout<< dfs(0,0,a.length()) << endl;
}
}
(已知前序、中序求后序)[http://acm.hdu.edu.cn/showproblem.php?pid=1710]——【int数组类型】
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e3 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int pre[maxn],mid[maxn],post[maxn],k=0;
//给一棵树的前序,中序输出后序
/*
先序遍历的第一个节点一定是这棵树上的根节点,
那么在中序遍历里找到根节点,
中序数组根节点左边的元素全在左子树,
右边的元素在右子树,一直划分到叶子节点为止。
*/
void dfs(int l1,int r1,int l2,int r2)
{
if(l1>r1 || l2>r2) return ;
int o = pre[l1], pos;
for(int i=l2; ;i++)
{
if(mid[i] == o)
{
pos = i;
break;
}
}
int cnt = pos - l2;//左子树大小
dfs(l1+1,l1+cnt, l2,pos-1); //左子树->前+中
dfs(l1+cnt+1,r1, pos+1,r2); //右子树->前+中
post[k++]=o;
}
int n;
int main()
{
while(~scanf("%d",&n))
{
k=0;
for(int i=1;i<=n;i++)
scanf("%d",&pre[i]);
for(int i=1;i<=n;i++)
scanf("%d",&mid[i]);
dfs(1,n,1,n);
for(int i=0;i<k;i++)
printf("%d%c",post[i],i==k-1?'\n':' ');
}
}
/*
9
1 2 4 7 3 5 8 9 6
4 7 2 1 8 5 9 3 6
7 4 2 8 9 5 6 3 1
*/
洛谷:
【已知中序、后序求先序】——字符串类型:
题目描述
给出一棵二叉树的中序与后序排列。求出它的先序排列。(约定树结点用不同的大写字母表示,长度 \le 8≤8 )。
输入输出格式
输入格式:
22 行,均为大写字母组成的字符串,表示一棵二叉树的中序与后序排列。
输出格式:
11 行,表示一棵二叉树的先序。
输入输出样例
输入样例#1:
BADC
BDCA
输出样例#1:
ABCD
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e3 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
char pre[maxn],mid[maxn],post[maxn];
int k=0;
vector<char> v;
//给一棵树的中序、后序输出 求先序排列[int]
void dfs(int l1,int r1,int l2,int r2)
{
if(l1>r1) return;
int o = post[r2], pos;
v.push_back(o);
for(int i=l1; ;i++)
{
if(mid[i] == o)
{
pos = i;
break;
}
}
int cnt = pos - l1;//左子树大小
dfs(l1,pos-1, l2,l2+cnt-1);//左子树->中+后
dfs(pos+1,r1, l2+cnt,r2-1);//右子树->中+后
//pre[k++]=o;
}
int n;
int main()
{
while(~scanf("%s%s",mid,post))
{
v.clear();
k=0;
int n = strlen(mid);
dfs(0,n-1,0,n-1);
for(int i=0;i<v.size();i++)
{
printf("%c",v[i]);
}
cout<<endl;
}
}
/*
4
2 1 4 3
2 4 3 1
*/
【已知中序、后序求先序】——int类型
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e3 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int pre[maxn],mid[maxn],post[maxn],k=0;
vector<int> v;
//给一棵树的中序、后序输出 求先序排列[int]
void dfs(int l1,int r1,int l2,int r2)
{
if(l1>r1) return;
int o = post[r2], pos;
v.push_back(o);
for(int i=l1; ;i++)
{
if(mid[i] == o)
{
pos = i;
break;
}
}
int cnt = pos - l1;//左子树大小
dfs(l1,pos-1, l2,l2+cnt-1);//左子树->中+后
dfs(pos+1,r1, l2+cnt,r2-1);//右子树->中+后
//pre[k++]=o;
}
int n;
int main()
{
while(~scanf("%d",&n))
{
v.clear();
k=0;
for(int i=1;i<=n;i++)
scanf("%d",&mid[i]);
for(int i=1;i<=n;i++)
scanf("%d",&post[i]);
dfs(1,n,1,n);
for(int i=0;i<v.size();i++)
{
if(i!=v.size()-1)
printf("%d ",v[i]);
else printf("%d\n",v[i]);
}
}
}
/*
4
2 1 4 3
2 4 3 1
*/