康托展开&逆展开算法笔记
康托展开(有关全排列)
康托展开:已知一个排列,求这个排列在全排列中是第几个
康托展开逆运算:已知在全排列中排第几,求这个排列
定义:
X=an(n-1)!+an-1(n-2)!+...+ai(i-1)!+...+a21!+a1*0!
ai为整数,并且0<=ai<i(1<=i<=n)
简单点说就是,判断这个数在其各个数字全排列中从小到大排第几位。
比如 1 3 2,在1、2、3的全排列中排第2位。
康托展开有啥用呢?
维基:n位(0~n-1)全排列后,其康托展开唯一且最大约为n!,因此可以由更小的空间来储存这些排列。由公式可将X逆推出对应的全排列。 它可以应用于哈希表中空间压缩,而且在搜索某些类型题时,将VIS数组量压缩。比如:八数码,魔板等题 --- 康托展开的大小即为在此排列前存在的排列的个数 比如 2 1 4 3 这个数,求其展开:从头判断,至尾结束,
① 比 2(第一位数)小的数有多少个->1个 就是1,1*3!
② 比 1(第二位数)小的数有多少个->0个 0*2!
③ 比 4(第三位数)小的数有多少个->3个 就是1,2,3,但是1,2之前已经出现,所以是 1*1!
将所有乘积相加=7
比该数小的数有7个,所以该数排第8的位置。
1234 1243 1324 1342 1423 1432
2134 2143 2314 2341 2413 2431
3124 3142 3214 3241 3412 3421
4123 4132 4213 4231 4312 4321
//康托展开
LL Work(char str[])
{
int len = strlen(str);
LL ans = 0;
for(int i=0; i<len; i++)
{
int tmp = 0;
for(int j=i+1; j<len; j++)
if(str[j] < str[i]) tmp++;
ans += tmp * f[len-i-1]; //f[]为阶乘
}
return ans; //返回该字符串是全排列中第几大,从1开始
}
逆运算的方法:
假设求4位数中第19个位置的数字。
① 19减去1 → 18
② 18 对 3! 作除法 → 得3余0
③ 0对 2! 作除法 → 得0余0
④ 0对 1! 作除法 → 得0余0
据上面的可知:
我们第一位数(最左面的数),比第一位数小的数有3个,显然 第一位数为→ 4
比第二位数小的数字有0个,所以 第二位数为→1
比第三位数小的数字有0个,因为1已经用过,所以第三位数为→2
第四位数剩下 3
该数字为 4123 (正解)
//康托逆展开
void reverse_contor(int x){
memset(vis,0,sizeof vis);
x--;
int j;
for(int i=1;i<=n;i++){
int t=x/fac[n-i];
for(j=1;j<=n;j++){
if(!vis[j]){
if(!t) break;
t--;
}
}
printf("%d ",j);
vis[j]=1;
x%=fac[n-i];
}
puts("");
}
【康托展开例题】
CSU-1828
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define mp make_pair
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define reps(i,x,n) for(int i=(x); i<=(n); i++)
#define sf scanf
#define pf printf
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long ll;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const ULL base = 100000007;//33951943
const int INF = 0x3f3f3f3f;
const ll LNF = 9997;
const int maxn = 1e5+50;
const int maxm = 1e5 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
ll fac[11];
char s[10];
int n,m,p;
int main()
{
int T;
fac[1]=1;
rep(i,2,10) fac[i]=fac[i-1]*i;
sf("%d",&T);
while(T--)
{
sf("%s",s);
ll res=0;
rep(i,0,9)
{
ll tmp=0;
rep(j,i+1,9)
{
if(s[j]<s[i]) tmp++;
}
res+=tmp*fac[9-i-1];
}
pf("%lld\n",res+1);
}
return 0;
}
/*
【题意】
【类型】
【分析】
【时间复杂度&&优化】
【trick】
【数据】
*/