POJ 2785 4 Values whose Sum is 0
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
【代码】:
【Time】:O(N²logN)
#include <iostream> #include <algorithm> #include<cstdio> using namespace std; #define N 4005 int n, a[N], b[N], c[N], d[N], cd[N*N]; int main() { cin >> n; for(int i = 0;i < n; i++) scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]); for(int i = 0;i < n; i++){ for(int j = 0;j < n; j++){ cd[i*n+j] = c[i] + d[j]; } } sort(cd,cd+n*n); long long ans = 0; for(int i = 0;i < n; i++){ for(int j = 0;j < n; j++){ int x = -(a[i] + b[j]); ans += upper_bound(cd, cd+n*n, x) - lower_bound(cd, cd+n*n, x); } } cout << ans << endl; return 0; } /* 6 -45 -41 -36 -36 26 -32 22 -27 53 30 -38 -54 42 56 -37 -75 -10 -6 -16 30 77 -46 62 45 */