洛谷 P1004 方格取数 【多线程DP/四维DP/】

题目描述(https://www.luogu.org/problemnew/show/1004)

设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放

人数字0。如下图所示(见样例):

A
 0  0  0  0  0  0  0  0
 0  0 13  0  0  6  0  0
 0  0  0  0  7  0  0  0
 0  0  0 14  0  0  0  0
 0 21  0  0  0  4  0  0
 0  0 15  0  0  0  0  0
 0 14  0  0  0  0  0  0
 0  0  0  0  0  0  0  0
.                       B

某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B

点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从A点到B点共走两次,试找出2条这样的路径,使得取得的数之和为最大。

输入输出格式

输入格式:

 

输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个

表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

 

输出格式:

 

只需输出一个整数,表示2条路径上取得的最大的和。

 

输入输出样例

输入样例#1: 复制
8
2 3 13
2 6  6
3 5  7
4 4 14
5 2 21
5 6  4
6 3 15
7 2 14
0 0  0
输出样例#1: 复制
67

说明

NOIP 2000 提高组第四题

 

 

【分析】:

第一点:开四维数组:

把两条路径当作两个人同时在走,

则有四个坐标,分别为两个人的

纵横坐标,同理开四个for循环。

第二点:决策:

有四种走法:

(下,下),(下,右),

(右,下),(右,右)。

分别表示为:

s[i-1][j][h-1][k],s[i][j-1][h][k-1]

s[i-1][j][h][k-1],s[i][j-1][h-1][k]

(i,j为第一人,h,k为第二人)

则可得状态转移方程:

第一个人:s[i][j][h][k]=max(tmp1,tmp2)+a[i][j];

第二个人:s[i][j][h][k]+=a[h][k];

注意:若i=h&&j=k,则只能加一次。

【代码】:

#include<bits/stdc++.h>
using namespace std;
int n,x,y,val,maxn,f[12][12][12][12],a[12][12];//a[i][j][k][l]表示两个人同时走,一个走i,j 一个走k,l
int main(){
    cin>>n;
    memset(a,0,sizeof a);

    while(cin>>x>>y>>val){
        if(x==0&&y==0&&val==0)break;
        a[x][y]=val;
    }


    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            for(int k=1;k<=n;k++){
                for(int l=1;l<=n;l++){
                    int op1=max(f[i-1][j][k-1][l],f[i][j-1][k][l-1]);
                    int op2=max(f[i-1][j][k][l-1],f[i][j-1][k-1][l]);
                    f[i][j][k][l]=max(op1,op2)+a[i][j]+a[k][l];
                    if(i==k&&j==l)f[i][j][k][l]-=a[i][j];
                }
            }
        }
    }
    printf("%d\n",f[n][n][n][n]);
    return 0;
}
四维dp

 

posted @ 2017-12-03 14:19  Roni_i  阅读(302)  评论(0编辑  收藏  举报