动态规划-最长上升子序列(LIS模板)多解+变形
问题描述
一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
解题思路
如何把这个问题分解成子问题呢?经过分析,发现 “求以ak(k=1, 2, 3…N)为终点的最长上升子序列的长度”是个好的子问题――这里把一个上升子序列中最右边的那个数,称为该子序列的“终点”。虽然这个子问题和原问题形式上并不完全一样,但是只要这N个子问题都解决了,那么这N个子问题的解中,最大的那个就是整个问题的解。
由上所述的子问题只和一个变量相关,就是数字的位置。因此序列中数的位置k 就是“状态”,而状态 k 对应的“值”,就是以ak做为“终点”的最长上升子序列的长度。这个问题的状态一共有N个。状态定义出来后,转移方程就不难想了。假定MaxLen (k)表示以ak做为“终点”的最长上升子序列的长度,那么
MaxLen (1) = 1
MaxLen (k) = Max { MaxLen (i):1<i < k 且 ai < ak且 k≠1 } + 1
这个状态转移方程的意思就是,MaxLen(k)的值,就是在ak左边,“终点”数值小于ak,且长度最大的那个上升子序列的长度再加1。因为ak左边任何“终点”小于ak的子序列,加上ak后就能形成一个更长的上升子序列。对于每一个数,他都是在“可以接下去”的中,从前面的最优值+1转移而来。因此,这个算法是可以求出正确答案的。复杂度很明显,外层 i 枚举每个数,内层 j 枚举目前i的最优值,即O(n^2)。
【未优化代码O(n^2)】
#include <iostream> #include <cstdio> #include <algorithm> using namespace std; const int N = 1e4+10; int a[N],dp[N]; int main() { int n; while(~scanf("%d",&n)) { for(int i=0;i<n;i++) { scanf("%d",&a[i]); dp[i]=1; } int ans=0; for(int i=0;i<n;i++)//if(i==1) 1 1 -> 0 *** if(i==0) 1 1 -> 1 { for(int j=0;j<i;j++) { if(a[j]<a[i]) { dp[i]=max(dp[j]+1,dp[i]); } } ans=max(ans,dp[i]); } printf("%d\n",ans); } return 0; }
优化到Ologn
排序+LCS 算法 以及 DP算法就忽略了,这两个太容易理解了。
假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。n
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
第8个, d[8] = 9,得到B[5] = 9,嗯。 Len继续增大,到5了。
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
于是我们知道了LIS的长度为5。
注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN),于是算法的时间复杂度就降低到了O(NlogN)
【代码】:
大于dp插入尾部,否则替换dp中的a【i】
#include <iostream> #include <cstdio> #include <algorithm> using namespace std; #define inf 0x3f3f3f const int N = 40000+10; int a[N],dp[N],top; int binary_search(int i) { int l,r,mid; l=1,r=top; while(l<r) { mid=l+(r-l)/2; if(dp[mid]>=a[i]) r=mid; else l=mid+1; } return l; }// int main() { int n; while(~scanf("%d",&n)) { for(int i=1;i<=n;i++) scanf("%d",a+i); dp[1]=a[1]; top=1; for(int i=2;i<=n;i++) { if(a[i]>dp[top]) dp[++top]=a[i]; else { int pos=upper_bound(dp, dp+top, a[i])-dp;//binary_search(i); dp[pos]=a[i]; } } printf("%d\n",top); } return 0; }