codeforces #441 B Divisiblity of Differences【数学/hash】
You are given a multiset of n integers. You should select exactly k of them in a such way that the difference between any two of them is divisible by m, or tell that it is impossible.
Numbers can be repeated in the original multiset and in the multiset of selected numbers, but number of occurrences of any number in multiset of selected numbers should not exceed the number of its occurrences in the original multiset.
First line contains three integers n, k and m (2 ≤ k ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — number of integers in the multiset, number of integers you should select and the required divisor of any pair of selected integers.
Second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109) — the numbers in the multiset.
If it is not possible to select k numbers in the desired way, output «No» (without the quotes).
Otherwise, in the first line of output print «Yes» (without the quotes). In the second line print k integers b1, b2, ..., bk — the selected numbers. If there are multiple possible solutions, print any of them.
3 2 3
1 8 4
Yes
1 4
3 3 3
1 8 4
No
4 3 5
2 7 7 7
Yes
2 7 7
【题意】:给你n个数a[i],让你找出一个大小为k的集合,使得集合中的数两两之差为m的倍数。 若有多解,输出任意一个集合即可。
【分析】:若一个集合中的数,两两之差为m的倍数,则他们 mod m 的值均相等。所以O(N)扫一遍,对于每个数a:vector v[a%m].push_back(a) 一旦有一个集合大小为k,则输出。
【代码】:
#include<bits/stdc++.h> using namespace std; int main(){ int n,k,m; cin>>n>>k>>m; int arr[m]={0}; long int val[n]; for(int i=0;i<n;i++){ cin>>val[i]; arr[val[i]%m]++; } int pos=-1; for(int i=0;i<m;i++){ if(arr[i]>=k){ pos=i; break; } } if(pos==-1){ cout<<"No"<<endl; } else{ cout<<"Yes"<<endl; int i=0; while(k--){ while(val[i]%m!=pos){ i++; } cout<<val[i]<<" "; i++; } cout<<endl; } return 0; }
#include<bits/stdc++.h> using namespace std; int a[100009], b[100009]; int main() { int n, k, m; scanf("%d%d%d", &n, &k, &m); memset(b, 0, sizeof(b)); for(int i = 1; i <= n; i++) { scanf("%d", &a[i]); b[a[i]%m]++; } int len = 0; for(int i = 0; i <= 100000; i++) { if(b[i] >= k) { for(int j = 1; j <= n && len < k; j++) if(a[j] % m == i) a[len++] = a[j]; } } if(len == 0) puts("No"); else { puts("Yes"); for(int i = 0; i < len; i++) printf("%d%c", a[i], i == len - 1 ? '\n' : ' '); } return 0; }