CSU 1337 搞笑版费马大定理【优化枚举】

费马大定理:当n>2时,不定方程an+bn=cn没有正整数解。比如a3+b3=c3没有正整数解。为了活跃气氛,我们不妨来个搞笑版:把方程改成a3+b3=c3,这样就有解了,比如a=4, b=9, c=79时43+93=793。

输入两个整数x, y, 求满足x<=a,b,c<=y的整数解的个数。

 

Input

输入最多包含10组数据。每组数据包含两个整数x, y(1<=x,y<=108)。

 

Output

对于每组数据,输出解的个数。

 

Sample Input

1 10
1 20
123 456789

Sample Output

Case 1: 0
Case 2: 2
Case 3: 16
【分析】:数据范围就是一个突破口。
虽然x和y的范围都是10^8,但是如果a 是大于1000的话,那么a^3就会大于10^9,这样等号的右边只有一个10 * c + 3,
这个最大只能达到10^9数量级,所以,不管输入的x跟y是多少,我们只要取其中的在1到1000的区间就可以了,
枚举a和b,那么c就可以得到,然后判断c的范围是不是在x到y之间,这样时间复杂度就降到了10^6.
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define INF 999999
using namespace std;

int main()
{
    int x,y;
    int cas=1;
    int cnt;
    while(~scanf("%d%d",&x,&y))
    {
        cnt=0;
        for(int i=x;i<1005;i++)
        {
            for(int j=x;j<1005;j++)
            {
                if((i*i*i+j*j*j)%10==3&&(i*i*i+j*j*j)/10>=x&&(i*i*i+j*j*j)/10<=y)
                    cnt++;
            }
        }
        printf("Case %d: %d\n",cas++,cnt);
    }
    return 0;
}
View Code

 

posted @ 2017-08-17 23:24  Roni_i  阅读(191)  评论(0编辑  收藏  举报