Tensorflow笔记:tensorflow 的基本概念(张量,数据类型,计算图,会话)
一、基本概念
基于 Tensorflow 的 NN:用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重(参数),得到模型。
张量:张量就是多维数组(列表),用“阶”表示张量的维度。
0 阶张量称作标量,表示一个单独的数;
举例 S=123
1 阶张量称作向量,表示一个一维数组; 举例 V=[1,2,3]
2 阶张量称作矩阵,表示一个二维数组,它可以有 i 行 j 列个元素,每个元素可
以用行号和列号共同索引到;
举例 m=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
判断张量是几阶的,就通过张量右边的方括号数,0 个是 0 阶,n 个是 n 阶,张
量可以表示 0 阶到 n 阶数组(列表);
举例 t=[ [ [… ] ] ]为 3 阶。
数据类型:Tensorflow 的数据类型有 tf.float32、tf.int32 等。
举例 :
我们实现 Tensorflow 的加法:
import tensorflow as tf #引入模块
a = tf.constant([1.0, 2.0]) #定义一个张量等于[1.0,2.0]
b = tf.constant([3.0, 4.0]) #定义一个张量等于[3.0,4.0]
result = a+b #实现 a 加 b 的加法
print result #打印出结果
可以打印出这样一句话:
Tensor(“add:0”, shape=(2, ), dtype=float32)
意思为 result 是一个名称为 add:0 的张量,shape=(2,)表示一维数组长度为 2,dtype=float32 表示数据类型为浮点型。
计算图(Graph): 搭建神经网络的计算过程,是承载一个或多个计算节点的一
张图,只搭建网络,不运算。
举例
在第一讲中我们曾提到过,神经网络的基本模型是神经元,神经元的基本模型其
实就是数学中的乘、加运算。我们搭建如下的计算图:
x1、x2 表示输入,w1、w2 分别是 x1 到 y 和 x2 到 y 的权重,y=x1*w1+x2*w2。
我们实现上述计算图:
import tensorflow as tf #引入模块
x = tf.constant([[1.0, 2.0]]) #定义一个 2 阶张量等于[[1.0,2.0]]
w = tf.constant([[3.0], [4.0]]) #定义一个 2 阶张量等于[[3.0],[4.0]]
y = tf.matmul(x, w) #实现 xw 矩阵乘法
print y #打印出结果
可以打印出这样一句话:
Tensor(“matmul:0”, shape(1,1), dtype=float32)
从这里我们可以看出,print 的结果显示 y 是一个张量,只搭建承载计算过程的计算图,并没有运算,如果我们想得到运算结果就要用到“会话 Session()”了。
会话(Session): 执行计算图中的节点运算。
我们用 with 结构实现,语法如下:
with tf.Session() as sess:
print sess.run(y)
举例
对于刚刚所述计算图,我们执行 Session()会话可得到矩阵相乘结果:
import tensorflow as tf #引入模块
x = tf.constant([[1.0, 2.0]]) #定义一个 2 阶张量等于[[1.0,2.0]]
w = tf.constant([[3.0], [4.0]]) #定义一个 2 阶张量等于[[3.0],[4.0]]
y = tf.matmul(x, w) #实现 xw 矩阵乘法
print y #打印出结果
with tf.Session() as sess:
print sess.run(y) #执行会话并打印出执行后的结果
可以打印出这样的结果:
Tensor(“matmul:0”, shape(1,1), dtype=float32)
[[11.]]
我们可以看到,运行Session()会话前只打印出y是个张量的提示,运行Session()会话后打印出了 y 的结果 1.0*3.0 + 2.0*4.0 = 11.0。
注①:我们以后会常用到 vim 编辑器,为了使用方便,我们可以更改 vim 的配置
文件,使 vim 的使用更加便捷。我们在 vim ~/.vimrc 写入:
set ts=4 表示使 Tab 键等效为 4 个空格
set nu 表示使 vim 显示行号 nu 是 number 缩写
注②:在 vim 编辑器中运行 Session()会话时,有时会出现“提示 warning”, 是
因为有的电脑可以支持加速指令,但是运行代码时并没有启动这些指令。可以把
这些“提示 warning”暂时屏蔽掉。屏蔽方法为进入主目录下的 bashrc 文件,在
bashrc 文件中加入这样一句 export TF_CPP_MIN_LOG_LEVEL=2,从而把“提示
warning”等级降低。
这个命令可以控制 python 程序显示提示信息的等级,在 Tensorflow 里面一般设
置成是"0"(显示所有信息)或者"1"(不显示 info), "2"代表不显示 warning,
"3"代表不显示 error。一般不建议设置成 3。
source 命令用于重新执行修改的初始化文件,使之立即生效,而不必注销并重
新登录。