Language Model & Data Sampling

语言模型

一段自然语言文本可以看作是一个离散时间序列,给定一个长度为TT的词的序列w1,w2,,wTw_1, w_2, \ldots, w_T

语言模型的目标就是评估该序列是否合理,即计算该序列的概率:

P(w1,w2,,wT). P(w_1, w_2, \ldots, w_T).
假设序列w1,w2,,wTw_1, w_2, \ldots, w_T中的每个词是依次生成的,则有

P(w1,w2,,wT)=t=1TP(wtw1,,wt1)=P(w1)P(w2w1)P(wTw1w2wT1) \begin{aligned} P(w_1, w_2, \ldots, w_T) &= \prod_{t=1}^T P(w_t \mid w_1, \ldots, w_{t-1})\\ &= P(w_1)P(w_2 \mid w_1) \cdots P(w_T \mid w_1w_2\cdots w_{T-1}) \end {aligned}
例如,一段含有4个词的文本序列的概率

P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w1,w2)P(w4w1,w2,w3). P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3).

语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目.

词的概率可以通过该词在训练数据集中的相对词频来计算,例如,w1w_1的概率可以计算为:

P^(w1)=n(w1)n \hat P(w_1) = \frac{n(w_1)}{n}

其中n(w1)n(w_1)为语料库中以w1w_1作为第一个词的文本的数量,nn为语料库中文本的总数量。

类似的,给定w1w_1情况下,w2w_2的条件概率可以计算为:

P^(w2w1)=n(w1,w2)n(w1) \hat P(w_2 \mid w_1) = \frac{n(w_1, w_2)}{n(w_1)}

其中n(w1,w2)n(w_1, w_2)为语料库中以w1w_1作为第一个词,w2w_2作为第二个词的文本的数量。


加点料 < 统计学知识 >

n 元语法

序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。nn元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面nn个词相关,即nn阶马尔可夫链(Markov chain of order nn),如果n=1n=1,那么有P(w3w1,w2)=P(w3w2)P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2)。基于n1n-1阶马尔可夫链,我们可以将语言模型改写为

P(w1,w2,,wT)=t=1TP(wtwt(n1),,wt1). P(w_1, w_2, \ldots, w_T) = \prod_{t=1}^T P(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1}) .

以上也叫nn元语法(nn-grams),它是基于n1n - 1阶马尔可夫链的概率语言模型。例如,当n=2n=2时,含有4个词的文本序列的概率就可以改写为:

P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w1,w2)P(w4w1,w2,w3)=P(w1)P(w2w1)P(w3w2)P(w4w3) \begin{aligned} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3)\\ &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) \end{aligned}

nn分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列w1,w2,w3,w4w_1, w_2, w_3, w_4在一元语法、二元语法和三元语法中的概率分别为

P(w1,w2,w3,w4)=P(w1)P(w2)P(w3)P(w4),P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w2)P(w4w3),P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w1,w2)P(w4w2,w3). \begin{aligned} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2) P(w_3) P(w_4) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_2, w_3) . \end{aligned}

nn较小时,nn元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当nn较大时,nn元语法需要计算并存储大量的词频和多词相邻频率。


深入理解元语法的缺陷

  • 参数空间过大

    n 元语法当 n 足够大的时候词频和使用频率的计算会越来越大

  • 数据稀疏

    齐夫定律:按频率递减顺序排列的频率词表中,单词的频率与它的序号之间存在“幂律”(power law)关系,即如果把单词按使用频率排序,那么使用频率与序号之间几乎恰好成反比。

在缺陷的基础上寻找问题的解决办法

数据采样

随机采样 && 相邻采样

引入数据集

利用周杰伦的歌词作为数据集 jaychou_lyrics.txt

下载地址

# read data
with open('path to jaychou_lyrics.txt') as f:
    corpus_chars = f.read()
print(len(corpus_chars))
print(corpus_chars[: 40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[: 10000]

# build character index
idx_to_char = list(set(corpus_chars)) # 去重,得到索引到字符的映射
char_to_idx = {char: i for i, char in enumerate(idx_to_char)} # 字符到索引的映射 enumerate枚举
vocab_size = len(char_to_idx)
print(vocab_size)
corpus_indices = [char_to_idx[char] for char in corpus_chars]  # 将每个字符转化为索引,得到一个索引的序列
sample = corpus_indices[: 20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample])) #join 进行字符的拼接
print('indices:', sample)

数据采样

在训练中我们需要每次随机读取小批量样本和标签。时序数据的一个样本通常包含连续的字符。假设时间步数为5,样本序列为5个字符,即“想”“要”“有”“直”“升”。该样本的标签序列为这些字符分别在训练集中的下一个字符,即“要”“有”“直”“升”“机”,即XX=“想要有直升”,YY=“要有直升机”。

现在我们考虑序列“想要有直升机,想要和你飞到宇宙去”,如果时间步数为5,有以下可能的样本和标签:

  • XX:“想要有直升”,YY:“要有直升机”
  • XX:“要有直升机”,YY:“有直升机,”
  • XX:“有直升机,”,YY:“直升机,想”
  • XX:“要和你飞到”,YY:“和你飞到宇”
  • XX:“和你飞到宇”,YY:“你飞到宇宙”
  • XX:“你飞到宇宙”,YY:“飞到宇宙去”

可以看到,如果序列的长度为TT,时间步数为nn,那么一共有TnT-n个合法的样本,但是这些样本有大量的重合,我们通常采用更加高效的采样方式。我们有两种方式对时序数据进行采样,分别是随机采样和相邻采样。

随机采样

下面的代码每次从数据里随机采样一个小批量。其中批量大小batch_size是每个小批量的样本数,num_steps是每个样本所包含的时间步数。
在随机采样中,每个样本是原始序列上任意截取的一段序列,相邻的两个随机小批量在原始序列上的位置不一定相毗邻。

import torch
import random
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):
    # 减1是因为对于长度为n的序列,X最多只有包含其中的前n - 1个字符
    num_examples = (len(corpus_indices) - 1) // num_steps  # 下取整,得到不重叠情况下的样本个数
    example_indices = [i * num_steps for i in range(num_examples)]  # 每个样本的第一个字符在corpus_indices中的下标
    random.shuffle(example_indices) #因为做随机采样,shuffle进行捣乱

    def _data(i):
        # 返回从i开始的长为num_steps的序列
        return corpus_indices[i: i + num_steps]
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    for i in range(0, num_examples, batch_size):
        # 每次选出batch_size个随机样本
        batch_indices = example_indices[i: i + batch_size]  # 当前batch的各个样本的首字符的下标
        X = [_data(j) for j in batch_indices]
        Y = [_data(j + 1) for j in batch_indices]
        yield torch.tensor(X, device=device), torch.tensor(Y, device=device)

测试

my_seq = list(range(30))
for X, Y in data_iter_random(my_seq, batch_size=2, num_steps=6):
    print('X: ', X, '\nY:', Y, '\n')
Result:
X:  tensor([[ 6,  7,  8,  9, 10, 11],
        [12, 13, 14, 15, 16, 17]]) 
Y: tensor([[ 7,  8,  9, 10, 11, 12],
        [13, 14, 15, 16, 17, 18]]) 

X:  tensor([[ 0,  1,  2,  3,  4,  5],
        [18, 19, 20, 21, 22, 23]]) 
Y: tensor([[ 1,  2,  3,  4,  5,  6],
        [19, 20, 21, 22, 23, 24]]) 

相邻采样

在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。

三部分堆叠构成二维的 tensor

def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    corpus_len = len(corpus_indices) // batch_size * batch_size  # 保留下来的序列的长度
    corpus_indices = corpus_indices[: corpus_len]  # 仅保留前corpus_len个字符
    indices = torch.tensor(corpus_indices, device=device)
    indices = indices.view(batch_size, -1)  # resize成(batch_size, )
    batch_num = (indices.shape[1] - 1) // num_steps
    for i in range(batch_num):
        i = i * num_steps
        X = indices[:, i: i + num_steps] #构建索引 X是样本
        Y = indices[:, i + 1: i + num_steps + 1] # Y 是标签
        yield X, Y

测试

for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=6):
    print('X: ', X, '\nY:', Y, '\n')
Result:
X:  tensor([[ 0,  1,  2,  3,  4,  5],
        [15, 16, 17, 18, 19, 20]]) 
Y: tensor([[ 1,  2,  3,  4,  5,  6],
        [16, 17, 18, 19, 20, 21]]) 

X:  tensor([[ 6,  7,  8,  9, 10, 11],
        [21, 22, 23, 24, 25, 26]]) 
Y: tensor([[ 7,  8,  9, 10, 11, 12],
        [22, 23, 24, 25, 26, 27]]) 
posted @ 2020-02-14 10:25  Roko&Basilisk  阅读(136)  评论(0编辑  收藏  举报