【概率与期望】hdu 4035 Maze
通道:http://acm.hdu.edu.cn/showproblem.php?pid=4035
题意:有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,从结点1出发,开始走,在每个结点i都有3种可能:
1.被杀死,回到结点1处(概率为ki)
2.找到出口,走出迷宫 (概率为ei)
3.和该点相连有m条边,随机走一条
求走出迷宫所要走的边数的期望值。
思路:
设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。 叶子结点: E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1); = ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei); 非叶子结点:(m为与结点相连的边数) E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) ); = ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei); 设对每个结点的形式为:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci; 那么对于非叶子结点i,设j为i的孩子结点,则 ∑(E[child[i]]) = ∑E[j] = ∑(Aj*E[1] + Bj*E[father[j]] + Cj) = ∑(Aj*E[1] + Bj*E[i] + Cj) 带入上面的式子得 (1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj; 由此可得 Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj); Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj); Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj); 对于叶子结点 Ai = ki; Bi = 1 - ki - ei; Ci = 1 - ki - ei; 从叶子结点开始,直到算出 A1,B1,C1; E[1] = A1*E[1] + B1*0 + C1; 所以 E[1] = C1 / (1 - A1); 若 A1趋近于1则无解...(转自kuangbin)
代码:https://github.com/Mithril0rd/Rojo/blob/master/hdu4035.cpp
TAG: 经典期望dp