ACdream 1112 Alice and Bob(素筛+博弈SG函数)
Description
Here is Alice and Bob again !
Alice and Bob are playing a game. There are several numbers.
First, Alice choose a number n.
Then he can replace n (n > 1) with one of its positive factor but not itself or he can replace n with a and b. Here a*b = n and a > 1 and b > 1.
For example, Alice can replace 6 with 2 or 3 or (2, 3).
But he can't replace 6 with 6 or (1, 6). But you can replace 6 with 1.
After Alice's turn, it’s Bob's turn. Alice and Bob take turns to do so. Who can’t do any replace lose the game.
Alice and Bob are both clever enough. Who is the winner?
Input
This problem contains multiple test cases. The first line contains one number n(1 ≤ n ≤ 100000).
The second line contains n numbers.
All the numbers are positive and less than of equal to 5000000.
Output
For each test case, if Alice can win, output “Alice”, otherwise output “Bob”.
Sample Input
2 2 2 3 2 2 4
Sample Output
Bob Alice
题意:给定n堆石子,每次可以按照规则将该堆石子的个数分为两堆或者将该堆石子的个数减少,
谁不能继续操作了谁就输。
题解:规则如下,若n=a*b且a>1,b>1,可以将石子分为a,b两堆;或者可以减少为a或b。
比如n=6,可以分为(2,3),2,3这三种情况,但是不能分为(1,6),1,6这三种情况。
和HDU3032是一个问题,就是一个取石子问题,这里的8=2*2*2就是那道题里的3,这里的
6=2*3就是那道题里的2。如果对这道题理解感到困难可以先阅读我的上上篇博客:
http://www.cnblogs.com/Ritchie/p/5627242.html
也就是说这道题是对每个数的素因子个数进行操作,即素数可以看做是一个1。
设一个数x=a1^r1*a2^r2*...*an^rn;设sum = r1+r2+...+rn.
然后所有的情况就可以表示为:
(1,sum-1),(2,sum-2),...(sum/2,sum-sum/2)或者(1),(2),...(n-1)
然后在计算sum的时候我们可以这样计算。
设一个数为x,他的最小的素因子为y.则sum[x] = sum[x/y] + 1;
所以我们在素筛打表的时候要记录每个数的最小素因子以用于上述公式。
#include <iostream> #include <cstring> #include <cstdio> using namespace std; #define maxn 5000050 int prime[maxn],cnt=0; bool isprime[maxn]; int m[maxn]; int a[maxn]; int sg[105]; void getprime() { memset(isprime,0,sizeof(isprime)); memset(m,0,sizeof(m)); memset(a,0,sizeof(a)); for(int i=2; i<=maxn; i++) { if(!isprime[i]) { prime[cnt++]=i; for(int j=i+i; j<=maxn; j+=i) { isprime[j]=1; if(!m[j]) m[j]=i; } m[i]=i; } } for(int i=2; i<=maxn; i++) a[i]=a[i/m[i]]+1; } void getsg() { memset(sg,0,sizeof(sg)); sg[0]=0; sg[1]=1; bool vis[105]; //放到循环里定义也一样需要每次都初始化 for(int i=2; i<=100; i++) { memset(vis,0,sizeof(vis)); //注意每次都要初始化 for(int j=0; j<i; j++) //取石子 vis[sg[j]]=1; for(int j=1; j<i; j++) //拆分 vis[sg[j]^sg[i-j]]=1; for(int x=0;; x++) if(!vis[x]) { sg[i]=x; break; } } } void get() { getsg(); getprime(); } void solve() { int n; while(scanf("%d",&n)!=EOF) { int data,ans=0; for(int i=0; i<n; i++) { scanf("%d",&data); ans^=sg[a[data]]; } if(ans) printf("Alice\n"); else printf("Bob\n"); } } int main() { get(); solve(); }