Codeforces 389A (最大公约数)

Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u

 Status

Description

Fox Ciel is playing a game with numbers now.

Ciel has n positive integers: x1x2, ..., xn. She can do the following operation as many times as needed: select two different indexes i and jsuch that xi > xj hold, and then apply assignment xi = xi - xj. The goal is to make the sum of all numbers as small as possible.

Please help Ciel to find this minimal sum.

Input

The first line contains an integer n (2 ≤ n ≤ 100). Then the second line contains n integers: x1x2, ..., xn (1 ≤ xi ≤ 100).

Output

Output a single integer — the required minimal sum.

Sample Input

Input
2
1 2
Output
2
Input
3
2 4 6
Output
6
Input
2
12 18
Output
12
Input
5
45 12 27 30 18
Output
15

Hint

In the first example the optimal way is to do the assignment: x2 = x2 - x1.

In the second example the optimal sequence of operations is: x3 = x3 - x2x2 = x2 - x1.

Source

题解:将题目转化一下,就是求n个数的最大公约数再乘以n。
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
    if (b==0) return a;
    else return gcd(b,a%b);
}
int main()
{
    int i,n,ans,a[105];
    while (cin>>n)
    {
        cin>>a[0];
        ans=a[0];
        for (i=1;i<n;i++)
        {
            cin>>a[i];
            ans=gcd(ans,a[i]);
        }
        cout<<ans*n<<endl;
    }
    return 0;
}

 

posted @ 2016-04-23 16:47  Ritchie丶  阅读(285)  评论(0编辑  收藏  举报