AtCoder ABC 165 D - Floor Function (Good, 手动模拟推出公式)

题目链接:Here

题意:

给出正整数 \(A,B,N (1\le A\le 1e6,1\le B,N\le1e12)\) ,对于 \(x\in [0,N]\) 求出

  • \(\left\lfloor\frac{A x}{B}\right\rfloor-A \times\left\lfloor\frac{x}{B}\right\rfloor\)

的最大值


\[QAQ \]


全搜索的话 \(\mathcal{O}(n)\) 的时间复杂度是肯定不行的,直接看过去公式应该能够化简,

如果不是 \(floor\) (向下取整) ,而是实数运算的话, \(\frac{Ax}B - \frac{Ax}B = 0\) 就恒成立了

大概如上思考的话,总觉得为了使 \(x\) 这个值更大,原公式后面部分的 \(\left\lfloor\frac{x}{B}\right\rfloor\)​ 应该尽可能的靠近向上取整得到的整数,即尽可能得到 \((.999999)\)​ 这样的答案,此时差值就变大起来了

实际模拟一下

样例一:\(A=5,B=7,N=4\)

\(x\) \(\left\lfloor\frac{A x}{B}\right\rfloor\) \(A \times\left\lfloor\frac{x}{B}\right\rfloor\) 差值
0 0 0 0
1 0 0 0
2 1 0 1
3 2 0 2
4 2 0 2
5 3 0 3
6 4 0 4
7 5 5 0
8 5 5 0
9 6 5 1
10 7 5 2
11 7 5 2
12 8 5 3
13 9 5 4

而且要注意的是:

  • \(A \times\left\lfloor\frac{x}{B}\right\rfloor\) 是周期的增加,\(B(=7),A(=5)\)

同理:\(\left\lfloor\frac{A x}{B}\right\rfloor\) 也是一样的

\(f(x) = \left\lfloor\frac{A x}{B}\right\rfloor-A \times\left\lfloor\frac{x}{B}\right\rfloor\)​ 的取值对于 \(B\) 来说是周期性的,所以 \(x\) 的取值

  • \(x=0,1,2,...,B-1\)

考虑这么多即可


\(x = 0,1,2,...,B-1\) 的范围中

  • \(\left\lfloor\frac{A x}{B}\right\rfloor\) 单调递增
  • \(A \times\left\lfloor\frac{x}{B}\right\rfloor\) 保持不变
  • 那么 \(f(x)\) 单调性也就是同 \(\left\lfloor\frac{A x}{B}\right\rfloor\) 一样单调递增了

换句话说,只要满足

  • \(x=0,1,...,B-1\)
  • \(x\le N\)

的话符合条件的最大 \(x\)​ 应该是 \(x=\min(N,B-1)\)

那么最后答案输出 $ \frac AB\times \min(N,B-1)$​​​ 即可

时间复杂度由全搜索的 \(\mathcal{O}(n) \to \mathcal{O}(1)\)

ll a, b, n;
int main() {
    cin.tie(nullptr)->sync_with_stdio(false);
    cin >> a >> b >> n;
    cout << a * min(n, b - 1) / b;
}
posted @ 2021-08-26 13:53  RioTian  阅读(51)  评论(0编辑  收藏  举报