项目2 可视化数据(第17章 使用API)
17.1 使用Web API
Web API是网站的一部分,用于与使用非常具体的URL请求特定信息的程序交互。这种请求称为API调用。请求的数据将以易于处理的格式(如JSON或CSV)返回。
17.1.1 使用API调用请求数据
https://api.github.com/search/repositories?q=language:python&sort=stars
这个调用返回GitHub当前托管了多少个Python项目,还有有关最受欢迎的Python仓库的信息。第一部分(https://api.github.com/)将请求发送到GitHub网站中响应API调用的部分;接下来的一部分(search/repositories)让API搜索GitHub上的所有仓库。
repositories后面的问号指出我们要传递一个实参。q表示查询,而等号让我们能够开始指定查询。通过使用language:python,我们指出只想获取主要语言为Python的仓库的信息。最后一部分(&sort=stars)指定将项目按其获得的星级进行排序。
下面显示了响应的前几行。从响应可知,该URL并不合适人工输入。
{
"total_count": 5201506,
"incomplete_results": true,
"items": [
{
"id": 83222441,
"node_id": "MDEwOlJlcG9zaXRvcnk4MzIyMjQ0MQ==",
"name": "system-design-primer",
"full_name": "donnemartin/system-design-primer",
"private": false,
从第二行输出可知,GitHub总共有5201506个Python项目。"incomplete_results"的值为false,证明请求是成功的(它并非是不完整的)。接下来,“items”,其中包含GitHub上最受欢迎的Python的项目的详细信息。
17.1.2 安装requests
因为我已经安装了,所以显示这个。
正常只需要在cmd中输入
pip install requests
17.1.3 处理API响应
下面来编写一个程序,它执行API调用并处理结果,找出GitHub上星级最高的Python项目:
import requests
#执行API调用并响应存储
url = "https://api.github.com/search/repositories?q=language:python&sort=stars"
r = requests.get(url)
print("Status code:", r.status_code)
# 将API响应存储在一个变量中
requests_dict = r.json()
# 处理结果
print(requests_dict.keys())
响应对象包含一个名为status_code的属性,它让我们知道请求是否成功了(状态码200表示请求成功)。
使用json()将这些信息转换为一个Python字典。
Status code: 200
dict_keys(['total_count', 'incomplete_results', 'items'])
17.1.4 处理响应字典
如果遇到响应失败问题只需要多进行几次连接即可(多运行几次)
import requests
#执行API调用并响应存储
url = "https://api.github.com/search/repositories?q=language:python&sort=stars"
r = requests.get(url)
print("Status code:", r.status_code)
# 将API响应存储在一个变量中
requests_dict = r.json()
print("Total repositories:", requests_dict['total_count'])
# 探索有关仓库信息
repo_dicts = requests_dict['item']
print("Repositories returned:", len(repo_dicts))
#研究第一个仓库
repo_dict = repo_dicts[0]
print("\nKeys:", len(repo_dict))
for key in range(repo_dict.keys()):
print(key)
结果返回
# 响应有亿点慢
下面来提取repo_dict中与一些键相关联的值:
import requests
#执行API调用并响应存储
url = "https://api.github.com/search/repositories?q=language:python&sort=stars"
r = requests.get(url)
print("Status code:", r.status_code)
# 将API响应存储在一个变量中
requests_dict = r.json()
print("Total repositories:", requests_dict['total_count'])
# 探索有关仓库信息
repo_dicts = requests_dict['item']
print("Repositories returned:", len(repo_dicts))
#研究第一个仓库
repo_dict = repo_dicts[0]
print("\nSelect information about first repository:")
# 打印项目名称
print("Name:", repo_dict['name'])
# 使用键owner来访问表示所有者的字典,再使用键key来获取所有者的登录名
print('Owner', repo_dict['owner']['login'])
# 打印项目获得了多少个星的评级
print('Stars', repo_dict['stargazers_count'])
# 项目在GitHub仓库的URL
print('Repository:', repo_dict['html_url'])
# 显示项目的创建时间
print('Created:', repo_dict['created_at'])
# 最后一次更新的时间
print('Updated:', repo_dict['updated_at'])
# 打印仓库的描述
print('Description:', repo_dict['description'])
Status code: 200
Total repositories: 5201506
Repositories returned: 30
Select information about first repository:
Name awesome-python
Owner vinta
Stars 70375
Repository: https://github.com/vinta/awesome-python
Created: 2014-06-27T21:00:06Z
Updated: 2019-07-26T05:59:59Z
Description: A curated list of awesome Python frameworks, libraries, software and resources
从上述可知,目前GitHub上星级最高的Python项目为awesome-python,其所有者用户为vinta,有70375多个用户给这个项目加星。创建时间为2014年6月,而且最近更新了。
17.1.5 概述最受欢迎的仓库
import requests
# 执行API调用并存储响应
url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
r = requests.get(url)
print("Status code:",r.status_code)
# 将API响应存储在一个变量中
response_dict = r.json()
print("Total repositories:",response_dict['total_count'])
# 探索有关仓库信息
repo_dicts = response_dict['items']
print("Repositories returned:",len(repo_dicts))
print("\nSelect information about each repository:")
for repo_dict in repo_dicts:
# 打印了项目的名称
print("Name", repo_dict['name'])
# 使用键owner来访问表示所有者的字典,再使用键key来获取所有者的登录名
print('Owner', repo_dict['owner']['login'])
# 打印项目获得了多少个星的评级
print('Stars', repo_dict['stargazers_count'])
# 项目在GitHub仓库的URL
print('Repository:', repo_dict['html_url'])
# 显示项目的创建时间
print('Created:', repo_dict['created_at'])
# 最后一次更新的时间
print('Updated:', repo_dict['updated_at'])
# 打印仓库的描述
print('Description:', repo_dict['description'])
17.1.6 监视API的速率限制
大多数API都存在速率限制,即你在特定时间内可执行的请求数存在限制。要获悉你是否接近了GitHub的限制,请在浏览器中输入https://api.github.com/rate_limit,看到类似下面的响应:
{
"resources": {
"core": {
"limit": 60,
"remaining": 60,
"reset": 1564126347
},
"search": {
"limit": 10,
"remaining": 10,
"reset": 1564122807
},
"graphql": {
"limit": 0,
"remaining": 0,
"reset": 1564126347
},
"integration_manifest": {
"limit": 5000,
"remaining": 5000,
"reset": 1564126347
}
},
"rate": {
"limit": 60,
"remaining": 60,
"reset": 1564126347
}
}
由上面的标记处可知,极限为每分钟10个请求,而在当前这一分钟内,我们还可以执行10个请求。reset指的是配额将重置的Unix时间或新纪元时间。用完配额后,你将收到一条简单的响应,由此可知已到达API极限。
17.2 使用Pygal可视化仓库
创建一个交互式条形图:条形的高度表示项目获得了多少颗星。单击条形将进入项目在GitHub上的主页。
import requests
import pygal
from pygal.style import LightColorizedStyle as LCS
from pygal.style import LightenStyle as LS
# 执行API调用并存储响应
url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
r = requests.get(url)
print("Status code:", r.status_code)
# 将API响应存储在一个变量中
response_dict = r.json()
print("Total repositories:", response_dict['total_count'])
# 探索有关仓库信息
repo_dicts = response_dict['items']
names, stars = [], []
for repo_dict in repo_dicts:
names.append(repo_dict['name'])
stars.append(repo_dict['stargazers_count'])
# 可视化
# 使用LS类定义一种样式,并将其基色设置为深蓝色
my_style = LS('#333366',base_style=LCS)
chart = pygal.Bar(style=my_style,x_label_rotation=45,show_legend=False)
chart.title = 'Most-Starred Python Projects on GitHub'
chart.x_labels = names
chart.add('',stars)
chart.render_to_file('python_repos.svg')
17.2.1 改进Pygal图表
创建一个交互式条形图:条形的高度表示项目获得了多少颗星。单击条形将进入项目在GitHub上的主页。
import requests
import pygal
from pygal.style import LightColorizedStyle as LCS
from pygal.style import LightenStyle as LS
# 执行API调用并存储响应
url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
r = requests.get(url)
print("Status code:", r.status_code)
# 将API响应存储在一个变量中
response_dict = r.json()
print("Total repositories:", response_dict['total_count'])
# 探索有关仓库信息
repo_dicts = response_dict['items']
names, stars = [], []
for repo_dict in repo_dicts:
names.append(repo_dict['name'])
stars.append(repo_dict['stargazers_count'])
# 可视化
my_style = LS('#333366', base_style=LCS)
my_config = pygal.Config() # 用于定制图表的外观
my_config.x_label_rotation = 45 # 标签绕 x 轴旋转 45 度
my_config.show_legend = False # 隐藏图例
my_config.title_font_size = 24 # 设置图表标题的字体大小
my_config.label_font_size = 14 # 设置图副标签的字体大小
my_config.major_label_font_size = 18 # 设置主标签的字体大小
my_config.truncate_label = 15 # 仅显示 15 个字符
my_config.show_y_guides = False # 隐藏图表中的水平线
my_config.width = 1000 # 设置自定义宽度
chart = pygal.Bar(my_config, style=my_style)
chart.add('', stars)
chart.render_to_file('python_repos.svg')
17.2.2 添加自定义工具提示
在Pygal中,将鼠标指向条形显示它表示的信息,这通常称为工具提示。
下面来创建一个自定义工具提示,以同时显示项目的描述。向add()传递一个字典列表,而不是列表。
import pygal
from pygal.style import LightColorizedStyle as LCS,LightenStyle as LS
my_style = LS('#333366',base_style=LCS)
chart = pygal.Bar(style=my_style,x_label_rotation=45,show_legend=False)
chart.title = 'Python Projects'
chart.x_labels=['httpie','django','flask']
plot_dicts = [
{'value':16101,'label':'Description of httpie.'},
{'value':15028,'label':'Description of django.'},
{'value':14798,'label':'Description of flask.'}
]
chart.add('',plot_dicts)
chart.render_to_file('bar_descrption.svg')
17.2.3 根据数据绘图
import requests
import pygal
from pygal.style import LightColorizedStyle as LCS
from pygal.style import LightenStyle as LS
# 执行API调用并存储响应
url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
r = requests.get(url)
print("Status code:", r.status_code)
# 将API响应存储在一个变量中
response_dict = r.json()
print("Total repositories:", response_dict['total_count'])
# 探索有关仓库信息
repo_dicts = response_dict['items']
names, plot_dicts = [], []
for repo_dict in repo_dicts:
names.append(repo_dict['name'])
plot_dict = {
'value': repo_dict['stargazers_count'],
'label': repo_dict['description'],
}
plot_dicts.append(plot_dict)
# 可视化
my_style = LS('#333366', base_style=LCS)
my_config = pygal.Config() # 用于定制图表的外观
my_config.x_label_rotation = 45 # 标签绕 x 轴旋转 45 度
my_config.show_legend = False # 隐藏图例
my_config.title_font_size = 24 # 设置图表标题的字体大小
my_config.label_font_size = 14 # 设置图副标签的字体大小
my_config.major_label_font_size = 18 # 设置主标签的字体大小
my_config.truncate_label = 15 # 仅显示 15 个字符
my_config.show_y_guides = False # 隐藏图表中的水平线
my_config.width = 1000 # 设置自定义宽度
chart = pygal.Bar(my_config, style=my_style)
chart.title = 'Most-Starred Python Projects on GitHub'
chart.x_labels = names
chart.add('', plot_dicts)
chart.render_to_file('python_repos.svg')
17.2.4 在图表中添加可单击的链接
Pygal还允许你将图表中的每个条形用作网站的链接。为此只需要添加一行代码,在位每个项目创建的字典中,添加一个键为‘xlink’的键-值对。
for repo_dict in repo_dicts:
names.append(repo_dict['name'])
plot_dict = {
'value':repo_dict['stargazers_count'],
'label':repo_dict['description'],
'xlink':repo_dict['html_url']
}
17.3 Haxker News API
下面执行一个API调用,返回Haxker News上当前最热门的文章的ID,再查看每篇排名靠前的文章:
import requests
from operator import itemgetter
# 执行API调用并存储响应
url = 'https://hacker-news.firebaseio.com/v0/topstories.json'
r = requests.get(url)
print("Status code:",r.status_code)
# 处理有关每篇文章的信息
submission_ids = r.json()
submission_dicts = []
for submission_id in submission_ids[:30]:
# 对于每篇文章,都执行一个API调用
url = ('https://hacker-news.firebaseio.com/v0/item/'+
str(submission_id)+'.json')
submission_r = requests.get(url)
print(submission_r.status_code)
response_dict = submission_r.json()
submission_dict = {
'title':response_dict['title'],
'link':'http://news.ycombinator.com/item?id=' + str(submission_id),
'comments':response_dict.get('descendants',0)
}
submission_dicts.append(submission_dict)
submission_dicts = sorted(submission_dicts,key=itemgetter('comments'),
reverse=True)
for submission_dict in submission_dicts:
print("\nTitle:",submission_dict['title'])
print("Discussion link:",submission_dict['link'])
print("Comments:",submission_dict['comments'])
dict.get(),它在指定的键存在时返回与之相关联的值,并在指定的键不存在时,返回你指定的值(这里是0)
D:\PycharmProject\Study\venv\Scripts\python.exe D:/data_visualization/hn_submission.py
Status code: 200
200
200
--ship--
Title: A "cure" for baldness could be around the corner
Discussion link: http://news.ycombinator.com/item?id=20531394
Comments: 231
Title: Square’s Growth Framework for Engineers and Engineering Managers
Discussion link: http://news.ycombinator.com/item?id=20530046
Comments: 204
Title: Photographers, Instagrammers: Stop Being So Selfish and Disrespectful
Discussion link: http://news.ycombinator.com/item?id=20530350
Comments: 161
Title: Photos and fingerprints of all EU citizens copied from the UK to the US
Discussion link: http://news.ycombinator.com/item?id=20533576
Comments: 108--ship--
Process finished with exit code 0