最小生成树算法【图解】:一文带你理解什么是Prim算法和Kruskal算法
假设以下情景,有一块木板,板上钉上了一些钉子,这些钉子可以由一些细绳连接起来。假设每个钉子可以通过一根或者多根细绳连接起来,那么一定存在这样的情况,即用最少的细绳把所有钉子连接起来。
更为实际的情景是这样的情况,在某地分布着N
个村庄,现在需要在N
个村庄之间修路,每个村庄之前的距离不同,问怎么修最短的路,将各个村庄连接起来。
以上这些问题都可以归纳为最小生成树问题,用正式的表述方法描述为:给定一个无方向的带权图G=(V, E)
,最小生成树为集合T
, T
是以最小代价连接V
中所有顶点所用边E
的最小集合。 集合T
中的边能够形成一颗树,这是因为每个节点(除了根节点)都能向上找到它的一个父节点。
解决最小生成树问题已经有前人开道,Prime
算法和Kruskal
算法,分别从点和边下手解决了该问题。
Prim算法
Prim
算法是一种产生最小生成树的算法。该算法于1930
年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník
)发现;并在1957
年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim
)独立发现;1959
年,艾兹格·迪科斯彻再次发现了该算法。
Prim
算法从任意一个顶点开始,每次选择一个与当前顶点集最近的一个顶点,并将两顶点之间的边加入到树中。Prim
算法在找当前最近顶点时使用到了贪婪算法。
证明
从任意一个结点开始,将结点分成两类:已加入的,未加入的。
每次从未加入的结点中,找一个与已加入的结点之间边权最小值最小的结点。
然后将这个结点加入,并连上那条边权最小的边。
重复 \(n-1\) 次即可。
证明:还是说明在每一步,都存在一棵最小生成树包含已选边集。
基础:只有一个结点的时候,显然成立。
归纳:如果某一步成立,当前边集为 \(F\) ,属于 \(T\) 这棵 MST,接下来要加入边 \(e\) 。
如果 \(e\) 属于 \(T\) ,那么成立。
否则考虑 \(T+e\) 中环上另一条可以加入当前边集的边 \(f\) 。
首先, \(f\) 的权值一定不小于 \(e\) 的权值,否则就会选择 \(f\) 而不是 \(e\) 了。
然后, \(f\) 的权值一定不大于 \(e\) 的权值,否则 \(T+e-f\) 就是一棵更小的生成树了。
因此, \(e\) 和 \(f\) 的权值相等, \(T+e-f\) 也是一棵最小生成树,且包含了 \(F\) 。
算法描述:
- 在一个加权连通图中,顶点集合
V
,边集合为E
- 任意选出一个点作为初始顶点,标记为
book
,计算所有与之相连接的点的距离,选择距离最短的,标记book
. - 重复以下操作,直到所有点都被标记为
book
:
在剩下的点钟,计算与已标记book
点距离最小的点,标记book
,证明加入了最小生成树。
下面我们来看一个最小生成树生成的过程:
1 起初,从顶点a
开始生成最小生成树
2 选择顶点a
后,顶点a
置成book
(涂黑),计算周围与它连接的点的距离:
3 与之相连的点距离分别为7
,4
,选择C
点距离最短,涂黑C
,同时将这条边高亮加入最小生成树:
4 计算与a,c
相连的点的距离(已经涂黑的点不计算),因为与a
相连的已经计算过了,只需要计算与c
相连的点,如果一个点与a,c
都相连,那么它与a
的距离之前已经计算过了,如果它与c的距离更近,则更新距离值,这里计算的是未涂黑的点距离涂黑的点的最近距离,很明显,b
和a
为7
,b
和c
的距离为6
,更新b
和已访问的点集距离为6
,而f
,e
和c
的距离分别是8
,9
,所以还是涂黑b
,高亮边bc
:
5 接下来很明显,d
距离b
最短,将d
涂黑,bd
高亮:
6 f
距离d
为7
,距离b
为4
,更新它的最短距离值是4
,所以涂黑f
,高亮bf
:
7 最后只有e
了:
针对如上的图,代码实例如下(配合注释理解):
#include<iostream>
#define INF 10000
using namespace std;
const int N = 6;
bool book[N];
int dist[N] = { 0 };
int graph[N][N] = { {INF,7,4,INF,INF,INF}, //INF代表两点之间不可达
{7,INF,6,2,INF,4},
{4,6,INF,INF,9,8},
{INF,2,INF,INF,INF,7},
{INF,INF,9,INF,INF,1},
{INF,4,8,7,1,INF}
};
int Prim(int cur) {//选择起始点
int index = cur;
int sum = 0;
int i = 0;
int j = 0;
cout << index << " ";//输出index可以输出路径
memset(book, false, sizeof(book));//初始化
book[cur] = true;//标记初始点
for (; i < N; ++i)
dist[i] = graph[cur][i];//初始化,并令每个与cur点邻接点的距离存入dist
for (i = 1; i < N; ++i) {
int minor = INF;
for (j = 0; j < N; ++j) {//找到与index相接的最短路径
if (!book[j] && dist[j] < minor) {
minor = dist[j];
index = j;
}
}
book[index] = true;
cout << index << " ";
sum += minor;
for (j = 0; j < N; ++j) {//重新初始化dist,找到与index邻接的点
if (!book[j] && dist[j] > graph[index][j])
dist[j] = graph[index][j];
}
}
cout << endl;
return sum;//返回最小生成树的总路径值
}
int main() {
//遍历每个点为起始点
for (int i = 0; i < N; ++i)
cout << Prim(i) << endl;
//cout<<Prim(0) << endl;//从顶点0开始
return 0;
}
Kruskal算法
Kruskal是另一个计算最小生成树的算法,其算法原理如下。首先,将每个顶点放入其自身的数据集合中。然后,按照权值的升序来选择边。当选择每条边时,判断定义边的顶点是否在不同的数据集中。如果是,将此边插入最小生成树的集合中,同时,将集合中包含每个顶点的联合体取出,如果不是,就移动到下一条边。重复这个过程直到所有的边都探查过。
前置知识
证明
思路很简单,为了造出一棵最小生成树,我们从最小边权的边开始,按边权从小到大依次加入,如果某次加边产生了环,就扔掉这条边,直到加入了 \(n-1\) 条边,即形成了一棵树。
证明:使用归纳法,证明任何时候 K 算法选择的边集都被某棵 MST 所包含。
基础:对于算法刚开始时,显然成立(最小生成树存在)。
归纳:假设某时刻成立,当前边集为 \(F\) ,令 \(T\) 为这棵 MST,考虑下一条加入的边 \(e\) 。
如果 \(e\) 属于 \(T\) ,那么成立。
否则, \(T+e\) 一定存在一个环,考虑这个环上不属于 \(F\) 的另一条边 \(f\) (一定只有一条)。
首先, \(f\) 的权值一定不会比 \(e\) 小,不然 \(f\) 会在 \(e\) 之前被选取。
然后, \(f\) 的权值一定不会比 \(e\) 大,不然 \(T+e-f\) 就是一棵比 \(T\) 还优的生成树了。
所以, \(T+e-f\) 包含了 \(F\) ,并且也是一棵最小生成树,归纳成立。
下面还是用一组图示来表现算法的过程:
1 初始情况,一个联通图,定义针对边的数据结构,包括起点,终点,边长度:
typedef struct _node{
int val; //长度
int start; //边的起点
int end; //边的终点
}Node;
2 在算法中首先取出所有的边,将边按照长短排序,然后首先取出最短的边,将a
,e
放入同一个集合里,在实现中我们使用到了并查集的概念:
3 继续找到第二短的边,将c
, d
再放入同一个集合里:
4 继续找,找到第三短的边ab
,因为a
,e
已经在一个集合里,再将b
加入:
5 继续找,找到b
,e
,因为b
,e
已经同属于一个集合,连起来的话就形成环了,所以边be
不加入最小生成树:
6 再找,找到bc
,因为c
,d
是一个集合的,a
,b
,e
是一个集合,所以再合并这两个集合:
这样所有的点都归到一个集合里,生成了最小生成树。
根据上图实现的代码如下:
#include<iostream>
#define N 7
using namespace std;
struct Node {
int val; //长度
int start; //边的起点
int end; //边的终点
};
Node V[N];
int cmp(const void *a, const void *b) {
return (*(Node *)a).val - (*(Node*)b).val;
}
//edge保存结点属性
int edge[N][3] = { { 0, 1, 3 },
{ 0, 4, 1 },
{ 1, 2, 5 },
{ 1, 4, 4 },
{ 2, 3, 2 },
{ 2, 4, 6 },
{ 3, 4, 7}
};
int father[N] = { 0 };
int cap[N] = { 0 };
//初始化集合,让所有的点都各成一个集合,每个集合都只包含自己
//并查集初始化,先令每个结点的父节点为自己
void make_set() {
for (int i = 0; i < N; ++i) {
father[i] = i;
cap[i] = 1;//集合大小(势力大小)
}
}
//递归寻找所属集合的父节点
//并且在寻找父节点的同时重置所属集合
int find_set(int x) {
if (x != father[x])
father[x] = find_set(father[x]);
return father[x];
}
//将x,y合并到同一个集合
void Union(int x, int y) {
x = find_set(x);
y = find_set(y);
if (x == y)
return;
if (cap[x] < cap[y])
father[x] = find_set(y);
else {//归左思想
if (cap[x] == cap[y])
cap[x]++;
father[y] = find_set(x);
}
}
int Kruskal(int n) {
int sum = 0;
make_set();
for (int i = 0; i < N; ++i) {
if (find_set(V[i].start) != find_set(V[i].end)) {
Union(V[i].start, V[i].end);
sum += V[i].val;
}
}
return sum;
}
int main() {
for (int i = 0; i < N; ++i) {
V[i].start = edge[i][0];
V[i].end = edge[i][1];
V[i].val = edge[i][2];
}
qsort(V, N, sizeof(V[0]), cmp);
cout << Kruskal(0) << endl;
}
除去这两种算法外还有——Boruvka 算法。
该算法的思想是前两种算法的结合。它可以用于求解 边权互不相同 的无向图的最小生成森林。(无向连通图就是最小生成树。)
介绍博文:Here