JZOJ3225[BJOI2013]load(圆方树+树链剖分/树上差分)

题目链接

JZOJ3225

题目大意

给出一张\(N\)个点\(M\)条边的无向图,和\(Q\)对点对\(p_i, q_i\),问最后图中每个点必定被\(p_i\)\(q_i\)的路径覆盖多少次

\(N \le 1e5, M, Q \le 2e5\)

样例输入 样例输出
4 4 2
1 2
1 3
2 3
1 4
4 2
4 3
2
1
1
2

解析

考虑\(p\)\(q\)的路径必定经过哪些点,显然是\(p\)\(q\)的简单路径经过的割点

回忆圆方树的构造,树上度数大于\(1\)的圆点就是原图上的割点

那么问题就简单了,建出圆方树,然后\(p\)\(q\)路径上的圆点答案都会加\(1\)(因为题目说起点和终点也算,就不用特殊处理了)

我拿了个树剖来维护,也可以树上差分

代码

#include <cstdio>
#include <iostream>
#include <cstring>
#include <vector>
#define MAXN 100005

typedef long long LL;
struct Graph {
	struct Edge {
		int v, next;
		Edge(int _v = 0, int _n = 0):v(_v), next(_n) {}
	} edge[MAXN << 2];
	int head[MAXN << 1], cnt;
	void init() { memset(head, -1, sizeof head); cnt = 0; }
	void add_edge(int u, int v) { edge[cnt] = Edge(v, head[u]); head[u] = cnt++; }
	void insert(int u, int v) { add_edge(u, v); add_edge(v, u); }
};
struct SegmentTree {
	int add[MAXN << 3];
	void update(int, int, int, int, int);
	int query(int, int, int, int);
};

char gc();
int read();
void Tarjan(int, int);
void rebuild();
void dfs1(int);
void dfs2(int);

int N, M, Q, idx, tot;
int dfn[MAXN << 1], top[MAXN << 1], fa[MAXN << 1], dep[MAXN << 1], low[MAXN], size[MAXN << 1], heavy[MAXN << 1];
int stk[MAXN], stop;
std::vector<int> bel[MAXN];
Graph G;
SegmentTree sgt;

int main() {
	G.init();
	tot = N = read(), M = read(), Q = read();
	for (int i = 1; i <= M; ++i) G.insert(read(), read());
	Tarjan(1, 0);
	rebuild();
	dfs1(1);
	top[1] = 1, idx = 0;
	dfs2(1);
	while (Q--) {
		int p = read(), q = read();
		while (top[p] ^ top[q]) {
			if (dep[top[p]] < dep[top[q]]) std::swap(p, q);
			sgt.update(1, 1, tot, dfn[top[p]], dfn[p]);
			p = fa[top[p]];
		}
		if (dep[p] > dep[q]) std::swap(p, q);
		sgt.update(1, 1, tot, dfn[p], dfn[q]);
	}
	for (int i = 1; i <= N; ++i)
		printf("%d\n", sgt.query(1, 1, tot, dfn[i]));

	return 0;
}
inline char gc() {
	static char buf[1000000], *p1, *p2;
	if (p1 == p2) p1 = (p2 = buf) + fread(buf, 1, 1000000, stdin);
	return p1 == p2 ? EOF : *p2++;
}
inline int read() {
	int res = 0; char ch = gc();
	while (ch < '0' || ch > '9') ch = gc();
	while (ch >= '0' && ch <= '9') res = (res << 1) + (res << 3) + ch - '0', ch = gc();
	return res;
}
void SegmentTree::update(int rt, int L, int R, int l, int r) {
	if (L >= l && R <= r) ++add[rt];
	else {
		int mid = (L + R) >> 1;
		if (l <= mid) update(rt << 1, L, mid, l, r);
		if (r > mid) update(rt << 1 | 1, mid + 1, R, l, r);
	}
}
int SegmentTree::query(int rt, int L, int R, int pos) {
	if (L == R) return add[rt];
	int mid = (L + R) >> 1;
	if (pos <= mid) return add[rt] + query(rt << 1, L, mid, pos);
	else return add[rt] + query(rt << 1 | 1, mid + 1, R, pos);
}
void Tarjan(int u, int fa) {
	dfn[u] = low[u] = ++idx;
	for (int i = G.head[u]; ~i; i = G.edge[i].next) {
		int v = G.edge[i].v;
		if (v == fa) continue;
		if (!dfn[v]) {
			stk[stop++] = v;
			Tarjan(v, u);
			low[u] = std::min(low[u], low[v]);
			if (low[v] >= dfn[u]) {
				int p; ++tot;
				do {
					p = stk[--stop];
					bel[p].push_back(tot);
				} while (p ^ v);
				bel[u].push_back(tot);
			}
		} else low[u] = std::min(low[u], dfn[v]);
	}
}
void rebuild() {
	G.init();
	for (int i = 1; i <= N; ++i) for (int j = 0; j < bel[i].size(); ++j)
		G.insert(i, bel[i][j]);
}
void dfs1(int u) {
	dep[u] = dep[fa[u]] + 1;
	size[u] = 1;
	for (int i = G.head[u]; ~i; i = G.edge[i].next) {
		int v = G.edge[i].v;
		if (v == fa[u]) continue;
		fa[v] = u, dfs1(v);
		size[u] += size[v];
		if (!heavy[u] || size[heavy[u]] < size[v]) heavy[u] = v;
	}
}
void dfs2(int u) {
	dfn[u] = ++idx;
	if (heavy[u]) {
		top[heavy[u]] = top[u];
		dfs2(heavy[u]);
	}
	for (int i = G.head[u]; ~i; i = G.edge[i].next) {
		int v = G.edge[i].v;
		if (v == fa[u] || v == heavy[u]) continue;
		top[v] = v, dfs2(v);
	}
}
//Rhein_E
posted @ 2019-03-28 17:18  Rhein_E  阅读(293)  评论(0编辑  收藏  举报