LeetCode 335:Self Crossing 自交

You are given an array x of n positive numbers. You start at point (0,0) and moves x[0] metres to the north, then x[1] metres to the west, x[2] metres to the south, x[3] metres to the east and so on. In other words, after each move your direction changes counter-clockwise.

Write a one-pass algorithm with O(1) extra space to determine, if your path crosses itself, or not.

Example 1:

Given x = [2, 1, 1, 2],
?????
?   ?
???????>
    ?

Return true (self crossing)

Example 2:

Given x = [1, 2, 3, 4],
????????
?      ?
?
?
?????????????>

Return false (not self crossing)

 

Example 3:

Given x = [1, 1, 1, 1],
?????
?   ?
?????>

Return true (self crossing)

题意概述:

给定一个大小为n的正实数数组,代表一条路径,路径由向北,向西,向南,向东组成,判断这条路径是否自交,要求额外空间为O(1)

算法分析:

如果去除了题目要求的额外空间复杂度为O(1)的条件,这题就变得非常简单,解法也显而易见,只要记录下这条路径上所有的点就可判断是否自交,但是这样做是O(n)的。所以要对题目进行分析,既然题目要求让我们考虑是否自交,那么思考的入手点应定为如何定义自交,仔细思考下可以发现自交只分为以下三种情况,而无其他可能:

  ①涉及四条边的相交;

  ②涉及五条边的重合;

  ③涉及六条边的相交;

以下为三种相交图:

 

因此如果发生某一条边相交,它仅涉及当前边的前三到五条边,因此得出以下代码,算法复杂度为O(n),额外空间复杂度为O(1):

class Solution {
    public boolean isSelfCrossing(int[] x) {
        int length = x.length;
        for(int i=3;i<length;i++){
            if(x[i]-x[i-2]>=0&&x[i-1]-x[i-3]<=0){
                return true;
            }
            if(i>=4&&x[i-1]==x[i-3]&&x[i-2]>=x[i-4]&&x[i]>=x[i-2]-x[i-4]){
                return true;
            }
            if(i>=5&&x[i-2]>=x[i-4]&&x[i-3]>=x[i-5]&&x[i]>=x[i-2]-x[i-4]&&x[i-1]>=x[i-3]-x[i-5]&&x[i-1]<=x[i-3]){
                return true;
            }
        }
        return false;
    }
}

 

posted @ 2017-12-02 16:34  Revenent  阅读(209)  评论(0编辑  收藏  举报