ZR#1004
ZR#1004
解法:
对于 $ (x^2 + y)^2 \equiv (x^2 - y)^2 + 1 \pmod p $
化简并整理得 $ 4x^2y \equiv 1 \pmod p $
即 $ 4x^2 $ 和 $ y $ 互为逆元时统计答案即可
CODE:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
#define LL long long
const int N = 1e5 + 100;
inline LL fast_pow(LL a,LL b,LL p) {
LL ans = 1;
while(b) {
if(b & 1) ans = ans * a % p;
a = a * a % p;
b >>= 1;
}
return ans % p;
}
map<LL,LL> vis;
LL n,p,ans,a[N];
int main() {
scanf("%lld%lld",&n,&p);
for(int i = 1 ; i <= n ; i++) {
scanf("%lld",&a[i]);
if(4 * a[i] % p * a[i] % p == 0) continue;
else vis[4 * a[i] % p * a[i] % p]++;
}
for(int i = 1 ; i <= n ; i++) {
LL inv = fast_pow(a[i],p - 2,p);
if(inv == 0) continue;
ans += vis[inv];
if(4 * a[i] % p * a[i] % p == inv) ans--;
}
printf("%lld\n",ans);
//system("pause");
return 0;
}
有些路你和某人一起走,就长得离谱,你和另外一些人走,就短得让人舍不得迈开脚步。