摘要:
宋浩《概率论与数理统计》笔记 4.4.1、 协方差 一、总结 一句话总结: Cov(X,Y)=E(XY)-EXEY 1、协方差:实例:二维离散型变量? 先求边缘分布,再按协方差公式Cov(X,Y)=E(XY)-EXEY来算 2、协方差:实例:二维连续型变量? 和离散一样,也是先求边缘密度,再按协方差 阅读全文
摘要:
宋浩《概率论与数理统计》笔记 4.3.2、 常见连续型的期望与方差 一、总结 一句话总结: 均匀分布:EX=(a+b)/2;DX=(b-a)^2/12 指数分布:EX=1/λ;DX=1/λ^2 正态分布:X~N(μ,σ^2)的期望就是μ,方差就是σ^2 1、均匀分布的期望和方差? 均匀分布:期望EX 阅读全文
摘要:
宋浩《概率论与数理统计》笔记 4.3.1、 常见离散型的期望与方差 一、总结 一句话总结: 0-1分布:EX=p;DX=pq 二项分布:EX=np;DX=npq:就相当于是n个0-1分布 几何分布:EX=1/p;DX=(1-p)/p^2 泊松分布:EX=λ;DX=λ 1、0-1分布的期望和方差? 0 阅读全文