tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least steps_per_epoch * epochs batches
tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least steps_per_epoch * epochs batches
一、总结
一句话总结:
保证batch_size(图像增强中)*steps_per_epoch(fit中)小于等于训练样本数
train_generator = train_datagen.flow_from_directory(
train_dir, # 目标目录
target_size=(150, 150), # 将所有图像的大小调整为 150×150
batch_size=20, # 因为使用了 binary_crossentropy 损失,所以需要用二进制标签
class_mode='binary')
history = model.fit(
train_generator,
steps_per_epoch=100,
epochs=150,
validation_data=validation_generator,
validation_steps=50)
# case 1
# 如果上面train_generator的batch_size是32,如果这里steps_per_epoch=100,那么会报错
"""
tensorflow:Your input ran out of data; interrupting training.
Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, 50 batches).
You may need to use the repeat() function when building your dataset.
"""
# 因为train样本数是2000(猫1000,狗1000),小于100*32
# case 2
# 如果上面train_generator的batch_size是20,如果这里steps_per_epoch=100,那么不会报错
# 因为大小刚好
# case 3
# 如果上面train_generator的batch_size是32,如果这里steps_per_epoch=int(1000/32),
# 那么不会报错,但是会有警告,因为也是不整除
# 不会报错因为int(1000/32)*32 < 2000
# case 4
# 如果上面train_generator的batch_size是40,如果这里steps_per_epoch=100,照样报错
# 因为40*100>2000
二、tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least steps_per_epoch * epochs batches
转自或参考:https://stackoverflow.com/questions/60509425/how-to-use-repeat-function-when-building-data-in-keras
1、报错
WARNING:tensorflow:Your input ran out of data;
interrupting training. Make sure that your dataset or generator can generate at least
steps_per_epoch * epochs batches (in this case, 5000 batches).
You may need to use the repeat() function when building your dataset.
2、现象
I am training a binary classifier on a dataset of cats and dogs:
Total Dataset: 10000 images
Training Dataset: 8000 images
Validation/Test Dataset: 2000 images
The Jupyter notebook code:
# Part 2 - Fitting the CNN to the images
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
history = model.fit_generator(training_set,
steps_per_epoch=8000,
epochs=25,
validation_data=test_set,
validation_steps=2000)
I trained it on a CPU without a problem but when I run on GPU it throws me this error:
Found 8000 images belonging to 2 classes.
Found 2000 images belonging to 2 classes.
WARNING:tensorflow:From <ipython-input-8-140743827a71>:23: Model.fit_generator (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
Instructions for updating:
Please use Model.fit, which supports generators.
WARNING:tensorflow:sample_weight modes were coerced from
...
to
['...']
WARNING:tensorflow:sample_weight modes were coerced from
...
to
['...']
Train for 8000 steps, validate for 2000 steps
Epoch 1/25
250/8000 [..............................] - ETA: 21:50 - loss: 7.6246 - accuracy: 0.5000
WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, 200000 batches). You may need to use the repeat() function when building your dataset.
250/8000 [..............................] - ETA: 21:52 - loss: 7.6246 - accuracy: 0.5000
I would like to know how to use the repeat() function in keras using Tensorflow 2.0?
3、解决
Your problem stems from the fact that the parameters steps_per_epoch
and validation_steps
need to be equal to the total number of data points divided to the batch_size.
Your code would work in Keras 1.X, prior to August 2017.
Change your model.fit
function to:
history = model.fit_generator(training_set,
steps_per_epoch=int(8000/batch_size),
epochs=25,
validation_data=test_set,
validation_steps=int(2000/batch_size))
As of TensorFlow2.1, fit_generator
is being deprecated. You can use .fit()
method also on generators.
TensorFlow >= 2.1 code:
history = model.fit(training_set.repeat(),
steps_per_epoch=int(8000/batch_size),
epochs=25,
validation_data=test_set.repeat(),
validation_steps=int(2000/batch_size))
Notice that int(8000/batch_size)
is equivalent to 8000 // batch_size
(integer division)
============================================================================
也就是steps_per_epoch=int(8000/batch_size),这里的8000是训练样本数
4、实例
训练样本为1000张,
train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True,) # 注意,不能增强验证数据 test_datagen = ImageDataGenerator(rescale=1./255) # 这里batch_size不能是32,不然就报如下错误 ''' WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least steps_per_epoch * epochs batches (in this case, 5000 batches). You may need to use the repeat() function when building your dataset. ''' # 可能是整除关系吧 train_generator = train_datagen.flow_from_directory( train_dir, # 目标目录 target_size=(150, 150), # 将所有图像的大小调整为 150×150 batch_size=20, # 因为使用了 binary_crossentropy 损失,所以需要用二进制标签 class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=20, class_mode='binary')
history = model.fit( train_generator, steps_per_epoch=100, epochs=150, validation_data=validation_generator, validation_steps=50)
如果上面的batch_size=32,那么这里如果steps_per_epoch=100会报错
steps_per_epoch 参数的作用:从生成器中抽取 steps_per_epoch 个批量后(即运行了 steps_per_epoch 次梯度下降),拟合过程 将进入下一个轮次。
4.1、具体测试情况
# case 1
# 如果上面train_generator的batch_size是32,如果这里steps_per_epoch=100,那么会报错
"""
tensorflow:Your input ran out of data; interrupting training.
Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, 50 batches).
You may need to use the repeat() function when building your dataset.
"""
# 因为train样本数是2000(猫1000,狗1000),小于100*32
# case 2
# 如果上面train_generator的batch_size是20,如果这里steps_per_epoch=100,那么不会报错
# 因为大小刚好
# case 3
# 如果上面train_generator的batch_size是32,如果这里steps_per_epoch=int(1000/32),
# 那么不会报错,但是会有警告,因为也是不整除
# 不会报错因为int(1000/32)*32 < 2000
# case 4
# 如果上面train_generator的batch_size是40,如果这里steps_per_epoch=100,照样报错
# 因为40*100>2000
5、具体代码