Tensorflow2(预课程)---5.1、手写数字识别-层方式
一、总结
一句话总结:
1、记得归一化:train_x = train_x/255
2、one_hot编码之后,损失函数是:categorical_crossentropy
3、输入数据记得打平:model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
4、输出层激活函数是softmax:model.add(tf.keras.layers.Dense(10,activation='softmax'))
# 构建容器
model = tf.keras.Sequential()
# 输入层
# 将多维数据(60000, 28, 28)变成一维
# 把图像扁平化成一个向量
model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
# 中间层
model.add(tf.keras.layers.Dense(256,activation='relu'))
model.add(tf.keras.layers.Dense(128,activation='relu'))
# 输出层
model.add(tf.keras.layers.Dense(10,activation='softmax'))
# 模型的结构
model.summary()
# 配置优化函数和损失器
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['acc'])
# 开始训练
history = model.fit(train_x,train_y,epochs=50,validation_data=(test_x,test_y))
1、报如下错误的原因:input shape to have value 784 but received input with shape [32, 28, 28]?
|||-begin
ValueError: Input 0 of layer sequential is incompatible with the layer: expected axis -1 of input shape to have value 784 but received input with shape [32, 28, 28]
|||-end
1)、input层是784,结果送进去的数据却是[32, 28, 28],默认batch是32
2)、错误的输入层:model.add(tf.keras.Input(shape=(784,)))
3)、解决方法是打平即可:model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
二、手写数字识别-层方式
博客对应课程的视频位置:
步骤
1、读取数据集
2、拆分数据集(拆分成训练数据集和测试数据集)
3、构建模型
4、训练模型
5、检验模型
直接从tensorflow的dataset来读取数据集即可
应该构建一个怎么样的模型:
输入是28*28维,输出是一个label,是一个10分类问题,
需要one_hot编码么,如果是one_hot编码,那么输出是10维
也就是 784->n->10,可以试下784->256->128->10
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
flatten (Flatten) (None, 784) 0
_________________________________________________________________
dense (Dense) (None, 256) 200960
_________________________________________________________________
dense_1 (Dense) (None, 128) 32896
_________________________________________________________________
dense_2 (Dense) (None, 10) 1290
=================================================================
Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0
_________________________________________________________________
报如下错误的原因:
ValueError: Input 0 of layer sequential is incompatible with the layer: expected axis -1 of input shape to have value 784 but received input with shape [32, 28, 28]
input层是784,结果送进去的数据却是[32, 28, 28]
model.add(tf.keras.Input(shape=(784,)))
这里是需要用Flatten来打平
model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
Epoch 1/50
1875/1875 [==============================] - 4s 2ms/step - loss: 0.2060 - acc: 0.9374 - val_loss: 0.1164 - val_acc: 0.9647
Epoch 2/50
1875/1875 [==============================] - 4s 2ms/step - loss: 0.0869 - acc: 0.9731 - val_loss: 0.0878 - val_acc: 0.9720
Epoch 3/50
1875/1875 [==============================] - 4s 2ms/step - loss: 0.0583 - acc: 0.9817 - val_loss: 0.0863 - val_acc: 0.9725
Epoch 4/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0434 - acc: 0.9860 - val_loss: 0.0819 - val_acc: 0.9759
Epoch 5/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0347 - acc: 0.9883 - val_loss: 0.0802 - val_acc: 0.9779
Epoch 6/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0278 - acc: 0.9910 - val_loss: 0.0794 - val_acc: 0.9773
Epoch 7/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0225 - acc: 0.9924 - val_loss: 0.0852 - val_acc: 0.9788
Epoch 8/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0201 - acc: 0.9935 - val_loss: 0.0893 - val_acc: 0.9800
Epoch 9/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0190 - acc: 0.9934 - val_loss: 0.0857 - val_acc: 0.9798
Epoch 10/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0157 - acc: 0.9945 - val_loss: 0.1004 - val_acc: 0.9807
Epoch 11/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0138 - acc: 0.9954 - val_loss: 0.1017 - val_acc: 0.9795
Epoch 12/50
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0147 - acc: 0.9953 - val_loss: 0.0969 - val_acc: 0.9802
Epoch 13/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0117 - acc: 0.9962 - val_loss: 0.1213 - val_acc: 0.9777
Epoch 14/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0128 - acc: 0.9958 - val_loss: 0.1070 - val_acc: 0.9814
Epoch 15/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0140 - acc: 0.9955 - val_loss: 0.0986 - val_acc: 0.9821
Epoch 16/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0095 - acc: 0.9969 - val_loss: 0.1198 - val_acc: 0.9776
Epoch 17/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0090 - acc: 0.9969 - val_loss: 0.1189 - val_acc: 0.9800
Epoch 18/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0105 - acc: 0.9964 - val_loss: 0.1233 - val_acc: 0.9805
Epoch 19/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0098 - acc: 0.9971 - val_loss: 0.1299 - val_acc: 0.9800
Epoch 20/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0109 - acc: 0.9964 - val_loss: 0.1207 - val_acc: 0.9814
Epoch 21/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0080 - acc: 0.9976 - val_loss: 0.1387 - val_acc: 0.9811
Epoch 22/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0093 - acc: 0.9973 - val_loss: 0.1303 - val_acc: 0.9805
Epoch 23/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0091 - acc: 0.9975 - val_loss: 0.1712 - val_acc: 0.9780
Epoch 24/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0083 - acc: 0.9977 - val_loss: 0.1386 - val_acc: 0.9798
Epoch 25/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0076 - acc: 0.9977 - val_loss: 0.1414 - val_acc: 0.9795
Epoch 26/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0083 - acc: 0.9978 - val_loss: 0.1428 - val_acc: 0.9802
Epoch 27/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0073 - acc: 0.9981 - val_loss: 0.1520 - val_acc: 0.9818
Epoch 28/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0098 - acc: 0.9975 - val_loss: 0.1469 - val_acc: 0.9784
Epoch 29/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0073 - acc: 0.9979 - val_loss: 0.1378 - val_acc: 0.9824
Epoch 30/50
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0066 - acc: 0.9983 - val_loss: 0.1421 - val_acc: 0.9825
Epoch 31/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0078 - acc: 0.9979 - val_loss: 0.1892 - val_acc: 0.9784
Epoch 32/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0077 - acc: 0.9978 - val_loss: 0.2032 - val_acc: 0.9784
Epoch 33/50
1875/1875 [==============================] - 4s 2ms/step - loss: 0.0095 - acc: 0.9974 - val_loss: 0.1809 - val_acc: 0.9794
Epoch 34/50
1875/1875 [==============================] - 4s 2ms/step - loss: 0.0055 - acc: 0.9984 - val_loss: 0.1615 - val_acc: 0.9799
Epoch 35/50
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0052 - acc: 0.9987 - val_loss: 0.1829 - val_acc: 0.9774
Epoch 36/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0127 - acc: 0.9973 - val_loss: 0.1849 - val_acc: 0.9783
Epoch 37/50
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0065 - acc: 0.9985 - val_loss: 0.1662 - val_acc: 0.9818
Epoch 38/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0075 - acc: 0.9980 - val_loss: 0.1702 - val_acc: 0.9817
Epoch 39/50
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0066 - acc: 0.9982 - val_loss: 0.1720 - val_acc: 0.9793
Epoch 40/50
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0051 - acc: 0.9985 - val_loss: 0.1934 - val_acc: 0.9805
Epoch 41/50
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0069 - acc: 0.9984 - val_loss: 0.1886 - val_acc: 0.9802
Epoch 42/50
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0088 - acc: 0.9979 - val_loss: 0.1895 - val_acc: 0.9828
Epoch 43/50
1875/1875 [==============================] - 4s 2ms/step - loss: 0.0050 - acc: 0.9987 - val_loss: 0.1910 - val_acc: 0.9819
Epoch 44/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0070 - acc: 0.9982 - val_loss: 0.1919 - val_acc: 0.9792
Epoch 45/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0058 - acc: 0.9985 - val_loss: 0.1940 - val_acc: 0.9813
Epoch 46/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0081 - acc: 0.9980 - val_loss: 0.1878 - val_acc: 0.9800
Epoch 47/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0070 - acc: 0.9984 - val_loss: 0.2207 - val_acc: 0.9799
Epoch 48/50
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0045 - acc: 0.9989 - val_loss: 0.1928 - val_acc: 0.9817
Epoch 49/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0082 - acc: 0.9984 - val_loss: 0.2355 - val_acc: 0.9791
Epoch 50/50
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0058 - acc: 0.9987 - val_loss: 0.1938 - val_acc: 0.9819
[[1.76423459e-18 1.08762158e-20 2.06955323e-23 ... 1.00000000e+00
2.93631932e-21 2.53346210e-18]
[0.00000000e+00 2.13415075e-36 1.00000000e+00 ... 0.00000000e+00
0.00000000e+00 0.00000000e+00]
[1.30913644e-29 1.00000000e+00 8.99171200e-17 ... 5.45806985e-20
3.10162455e-18 3.20532428e-24]
...
[0.00000000e+00 2.26332978e-38 6.84578581e-38 ... 4.47269063e-29
1.40015925e-30 3.70714689e-34]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 ... 0.00000000e+00
1.09249136e-34 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 3.67533234e-37 ... 0.00000000e+00
1.03161533e-34 0.00000000e+00]]
tf.Tensor(
[[0. 0. 0. ... 1. 0. 0.]
[0. 0. 1. ... 0. 0. 0.]
[0. 1. 0. ... 0. 0. 0.]
...
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]], shape=(10000, 10), dtype=float32)
tf.Tensor([7 2 1 ... 4 5 6], shape=(10000,), dtype=int64)
tf.Tensor([7 2 1 ... 4 5 6], shape=(10000,), dtype=int64)