微信扫一扫打赏支持

TensorFlow2_200729系列---23、卷积神经网络实例

TensorFlow2_200729系列---23、卷积神经网络实例

一、总结

一句话总结:

A、layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
B、layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
C、layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),

 

 

二、卷积神经网络实例

博客对应课程的视频位置:

 

import  os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

import  tensorflow as tf
from    tensorflow.keras import layers, optimizers, datasets, Sequential

tf.random.set_seed(2345)

# 卷积层
conv_layers = [ # 5 units of conv + max pooling
    # 5个单元
    # unit 1
    layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),

    # unit 2
    layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),

    # unit 3
    layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),

    # unit 4
    layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),

    # unit 5
    layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same')

]


# 归一化处理
def preprocess(x, y):
    # [0~1]
    x = tf.cast(x, dtype=tf.float32) / 255.
    y = tf.cast(y, dtype=tf.int32)
    return x,y

# 加载数据
(x,y), (x_test, y_test) = datasets.cifar100.load_data()
# 挤压
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
print(x.shape, y.shape, x_test.shape, y_test.shape)

# 训练数据
train_db = tf.data.Dataset.from_tensor_slices((x,y))
train_db = train_db.shuffle(1000).map(preprocess).batch(128)

# 测试数据
test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))
test_db = test_db.map(preprocess).batch(64)

# 数据样例
sample = next(iter(train_db))
print('sample:', sample[0].shape, sample[1].shape,
      tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))


def main():

    # 卷积层
    # [b, 32, 32, 3] => [b, 1, 1, 512]
    conv_net = Sequential(conv_layers)

    # 全连接层
    fc_net = Sequential([
        layers.Dense(256, activation=tf.nn.relu),
        layers.Dense(128, activation=tf.nn.relu),
        # 100个分类,输出
        layers.Dense(100, activation=None),
    ])

    # 卷积层网络构建
    conv_net.build(input_shape=[None, 32, 32, 3])
    # 全连接网络构建
    fc_net.build(input_shape=[None, 512])
    # 优化函数
    optimizer = optimizers.Adam(lr=1e-4)

    # [1, 2] + [3, 4] => [1, 2, 3, 4]
    # 所有的参数就是 卷积层的参数 和 全连接层的参数
    variables = conv_net.trainable_variables + fc_net.trainable_variables

    for epoch in range(50):

        for step, (x,y) in enumerate(train_db):

            with tf.GradientTape() as tape:
                # 卷积层
                # [b, 32, 32, 3] => [b, 1, 1, 512]
                out = conv_net(x)
                # reshape方便全连接层用
                # flatten, => [b, 512]
                out = tf.reshape(out, [-1, 512])
                # 全连接层
                # [b, 512] => [b, 100]
                logits = fc_net(out)
                # [b] => [b, 100]
                y_onehot = tf.one_hot(y, depth=100)
                # compute loss:crossentropy
                loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
                loss = tf.reduce_mean(loss)

            grads = tape.gradient(loss, variables)
            optimizer.apply_gradients(zip(grads, variables))

            if step %100 == 0:
                print(epoch, step, 'loss:', float(loss))



        total_num = 0
        total_correct = 0
        for x,y in test_db:

            out = conv_net(x)
            out = tf.reshape(out, [-1, 512])
            logits = fc_net(out)
            prob = tf.nn.softmax(logits, axis=1)
            pred = tf.argmax(prob, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)

            correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
            correct = tf.reduce_sum(correct)

            total_num += x.shape[0]
            total_correct += int(correct)

        acc = total_correct / total_num
        print(epoch, 'acc:', acc)



if __name__ == '__main__':
    main()

 

 
posted @ 2020-08-07 12:05  范仁义  阅读(124)  评论(0编辑  收藏  举报