TensorFlow2_200729系列---17、函数用梯度下降法求最值实例
TensorFlow2_200729系列---17、函数用梯度下降法求最值实例
一、总结
一句话总结:
从不同的初始点梯度下降,找到的极值点不一样
import numpy as np from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt import tensorflow as tf def himmelblau(x): return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 2 - 7) ** 2 x = np.arange(-6, 6, 0.1) y = np.arange(-6, 6, 0.1) print('x,y range:', x.shape, y.shape) X, Y = np.meshgrid(x, y) print('X,Y maps:', X.shape, Y.shape) Z = himmelblau([X, Y]) fig = plt.figure('himmelblau') ax = fig.gca(projection='3d') ax.plot_surface(X, Y, Z) ax.view_init(60, -30) ax.set_xlabel('x') ax.set_ylabel('y') plt.show() # [1., 0.], [-4, 0.], [4, 0.] x = tf.constant([4., 0.]) for step in range(200): with tf.GradientTape() as tape: tape.watch([x]) y = himmelblau(x) grads = tape.gradient(y, [x])[0] x -= 0.01*grads if step % 20 == 0: print ('step {}: x = {}, f(x) = {}' .format(step, x.numpy(), y.numpy()))
二、函数用梯度下降法求最值实例
博客对应课程的视频位置:
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import pyplot as plt
import tensorflow as tf
def himmelblau(x):
return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 2 - 7) ** 2
x = np.arange(-6, 6, 0.1)
y = np.arange(-6, 6, 0.1)
print('x,y range:', x.shape, y.shape)
X, Y = np.meshgrid(x, y)
print('X,Y maps:', X.shape, Y.shape)
Z = himmelblau([X, Y])
fig = plt.figure('himmelblau')
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, Z)
ax.view_init(60, -30)
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()
# [1., 0.], [-4, 0.], [4, 0.]
x = tf.constant([4., 0.])
for step in range(200):
with tf.GradientTape() as tape:
tape.watch([x])
y = himmelblau(x)
grads = tape.gradient(y, [x])[0]
x -= 0.01*grads
if step