微信扫一扫打赏支持

机器学习知识总结---1、回归和分类是可以相互转换的

机器学习知识总结---1、回归和分类是可以相互转换的

打赏

 

一、总结

一句话总结:

a、比如回归中算人脸的年纪,比如1-100岁,那么可以看做分类问题中有1-100个分类
b、所以,所有的分类算法都能做回归

 

1、如何算细胞的面积(或者周长)?

可以获取细胞的图像,描绘细胞的边缘,然后获取里面的像素值,就是细胞的面积,获取周长类似

 

 

2、比如对红细胞和白细胞来做分类?

1、先提取特征,选特征区别度高的,比如面积和圆形度
2、以面积为横坐标,圆形度为纵坐标画个图出来,当然面积和圆形度肯定都要先进行归一化处理
3、画一条线尽可能的区分红细胞和白细胞,机器学习最主要的任务也就是如何划线

 

 

3、特征个数和机器学习划线之间的关系?

如果特征是2个,那么就是二维表,我们画一条线区分不同分类,
如果特征是3个,就是三维表,那么我们需要画一个曲面
如果特征是10000个,那么就是一个10000维的表,我们需要一个10000-1元的方程

 

 

4、没有免费的午餐定理 实例?

a、如果我们不对特征空间做先验假设,则所有算法(包括瞎猜)的平均表现是一样的
b、例如明天太阳是否升起,如果没有那些先验假设,那么升起和不升起的概率是一样的

 

 

5、为什么一堆圆圈里面我们更容易预测为圆圈,一堆叉叉里面我们更容易预测为叉叉?

因为我们认为,特征差距小的样本,更可能是一类

 

 

6、什么是支持向量机(SVM)以及它的用途?

a、支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。
b、在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。


支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。
它是一种监督式学习的方法,广泛应用于统计分类以及回归分析中。

 

7、机器学习中线性模型和非线性模型的区别?

线性模型也就是画一条直线区分两个样本 ,非线性模型就是一条曲线

 

 

8、为什么支持向量机能够用在小样本的计算上面?

因为支持向量机只和 支持向量 相关

 

 

9、所有机器学习所做的事情?

1、先限定一个模型(方程)
2、在一个模型里面,留出待定的参数
3、再用训练样本确定参数的取值

 

10、svm支持向量机 能处理非线性的原理?

A、低维线性不可分的数据集,在高维空间,将以更大的概率被线性可分
B、所以svm做的操作就是把低维映射到高维,然后接着找直线

 

 

11、异或问题是最简单的非线性问题?

因为你找不到一条直线来分开

 

 

二、内容在总结中

博客对应课程的视频位置:

 

 

 
posted @   范仁义  阅读(893)  评论(0编辑  收藏  举报
编辑推荐:
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
阅读排行:
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· 语音处理 开源项目 EchoSharp
· 《HelloGitHub》第 106 期
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 使用 Dify + LLM 构建精确任务处理应用
历史上的今天:
2018-07-12 如何根据经纬度获取地址
2018-07-12 如何获取用户当前详细的地理位置
2018-07-12 如何获取用户的地理位置-浏览器地理位置(Geolocation)API 简介
2018-07-12 php gettext方式实现UTF-8国际化多语言(i18n)
2018-07-12 多语言系统如何实现
2018-07-12 js课程 5-13 js事件绑定和鼠标事件注意事项有哪些
2018-07-12 前端项目课程7 banner设计注意事项
侧边栏

打赏

点击右上角即可分享
微信分享提示